56 research outputs found
Asymptotically stable phase synchronization revealed by autoregressive circle maps
A new type of nonlinear time series analysis is introduced, based on phases,
which are defined as polar angles in spaces spanned by a finite number of
delayed coordinates. A canonical choice of the polar axis and a related
implicit estimation scheme for the potentially underlying auto-regressive
circle map (next phase map) guarantee the invertibility of reconstructed phase
space trajectories to the original coordinates. The resulting Fourier
approximated, Invertibility enforcing Phase Space map (FIPS map) is well suited
to detect conditional asymptotic stability of coupled phases. This rather
general synchronization criterion unites two existing generalisations of the
old concept and can successfully be applied e.g. to phases obtained from ECG
and airflow recordings characterizing cardio-respiratory interaction.Comment: PDF file, 232 KB, 24 pages, 3 figures; cheduled for Phys. Rev. E
(Nov) 200
Cardiovascular control and time domain Granger causality: insights from selective autonomic blockade
The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms
Genetic recombination pathways and genes are well studied, but relatively little is known in plants, especially in lower plants. To study the recombination apparatus of a lower land plant, a recombination gene well characterized particularly in yeast, mouse, and man, the RAD51 gene, was isolated from the moss Physcomitrella patens and characterized. Two highly homologous RAD51 genes were found to be present. Duplicated RAD51 genes have been found thus far exclusively in eukaryotes with duplicated genomes. Therefore the presence of two highly homologous genes suggests a recent genome duplication event in the ancestry of Physcomitrella. Comparison of the protein sequences to Rad51 proteins from other organisms showed that both RAD51 genes originated within the group of plant Rad51 proteins. However, the two proteins form a separate clade in a phylogenetic tree of plant Rad51 proteins. In contrast to RAD51 genes from other multicellular eukaryotes, the Physcomitrella genes are not interrupted by introns. Because introns are a common feature of Physcomitrella genes, the lack of introns in the RAD51 genes is unusual and may indicate the presence of an unusual recombination apparatus in this organism. The presence of duplicated intronless RAD51 genes is unique among eukaryotes. Studies of further members of this lineage are needed to determine whether this feature may be typical of lower plants
- …