20 research outputs found

    fMRI scanner noise interaction with affective neural processes

    Get PDF
    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes

    What is in that drink: the biological actions of ethanol, acetaldehyde, and salsolinol

    No full text
    Alcohol abuse and alcoholism represent substantial problems that affect a large portion of individuals throughout the world. Extensive research continues to be conducted in an effort to identify the biological basis of the reinforcing properties of alcohol in order to develop effective pharmacotherapeutic and behavioral interventions. One theory that has developed within the alcohol field over the past four decades postulates that the reinforcing properties of alcohol are due to the action of the metabolites/products of alcohol within the central nervous system (CNS). The most extreme version of this theory suggests that the biologically active metabolites/products of alcohol, created from the breakdown from alcohol, are the ultimate source of the reinforcing properties of alcohol. The contrary theory proposes that the reinforcing properties of alcohol are mediated completely through the interaction of the ethanol molecule with several neurochemical systems within the CNS. While there are scientific findings that offer support for both of these stances, the reinforcing properties of alcohol are most likely generated through a complex series of peripheral and central effects of both alcohol and its metabolites. Nonetheless, the development of a greater understanding for how the metabolites/products of alcohol contribute to the reinforcing properties of alcohol is an important factor in the development of efficacious pharmacotherapies for alcohol abuse and alcoholism. This chapter is intended to provide a historical perspective of the role of acetaldehyde (the first metabolite of alcohol) in alcohol reinforcement as well as review the basic research literature on the effects of acetaldehyde (and acetaldehyde metabolites/products) within the CNS and how these function with regard to alcohol reward
    corecore