5,995 research outputs found

    A Systemic Study of Nucleate Boiling

    Get PDF
    Nucleate boiling is a heavily researched form of heat transfer due to its associated high heat transfer rates. Applying two-phase heat transfer to space systems would allow these systems to become more capable, efficient, and compact. However, a fundamental understanding of boiling dynamics in the absence of buoyancy is yet to be developed. This study intends to analyze the effects of gravity, power input, and surface geometry during successive periods of microgravity provided by NASA’s “vomit comet” through the Reduced Gravity Student Flight Opportunities Program

    Microgravity Experiments for the ISS

    Get PDF
    The Get Away Special (GAS) team is a microgravity research team know for leading Utah State University to impressive distinction of flying more experiments in space than any other university in the world. The following experiments were designed by the GAS team after receiving the opportunity to develop and experiment to be performed by a Space Flight Participant aboard the International Space Station (ISS)

    Switched Moving Boundary Modeling of Phase Change Thermal Energy Storage Systems

    Full text link
    Thermal Energy Storage (TES) devices, which leverage the constant-temperature thermal capacity of the latent heat of a Phase Change Material (PCM), provide benefits to a variety of thermal management systems by decoupling the absorption and rejection of thermal energy. While performing a role similar to a battery in an electrical system, it is critical to know when to charge (freeze) and discharge (melt) the TES to maximize the capabilities and efficiency of the overall system. Therefore, control-oriented models of TES are needed to predict the behavior of the TES and make informed control decisions. While existing modeling approaches divide the TES in to multiple sections using a Fixed Grid (FG) approach, this paper proposes a switched Moving Boundary (MB) model that captures the key dynamics of the TES with significantly fewer dynamic states. Specifically, a graph-based modeling approach is used to model the heat flow through the TES and a MB approach is used to model the time-varying liquid and solid regions of the TES. Additionally, a Finite State Machine (FSM) is used to switch between four different modes of operation based on the State-of-Charge (SOC) of the TES. Numerical simulations comparing the proposed approach with a more traditional FG approach show that the MB model is capable of accurately modeling the behavior of the FG model while using far fewer states, leading to five times faster simulations.Comment: 7 pages, 6 figure

    Bubble Behavior in Nucleate Boiling Experiment Aboard the Space Shuttle

    Get PDF
    Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS- 108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachment from the heating wire, and travel in the water with effects of drag on bubble movement. Bubbles were observed to be ejected from the wire, travel through and eventually stop in the unsaturated water. The data from this experiment is in good agreement with the results of theoretical equations used to model bubble-fluid dynamics in microgravity. The primary conclusion from this experiment is that a bubble can be ejected from a heated wire in the absence of gravity, instead of the creation of a single large vapor bubble. Further conclusions from this research could be applied to the development of safe and efficient heat transfer systems for microgravity and terrestrial applications

    Hierarchical power management in vehicle systems

    Get PDF
    This dissertation presents a hierarchical model predictive control (MPC) framework for energy management onboard vehicle systems. High performance vehicle systems such as commercial and military aircraft, on- and off-road vehicles, and ships present a unique control challenge, where maximizing performance requires optimizing the generation, storage, distribution, and utilization of energy throughout the entire system and over the duration of operation. The proposed hierarchical approach decomposes control of the vehicle among multiple controllers operating at each level of the hierarchy. Each controller has a model of a corresponding portion of the system for predicting future behavior based on current and future control decisions and known disturbances. To capture the energy storage and power flow throughout the vehicle, a graph-based modeling framework is proposed, where vertices represent capacitive elements that store energy and edges represent paths for power flow between these capacitive elements. For systems with a general nonlinear form of power flow, closed-loop stability is established through local subsystem analysis based on passivity. The ability to assess system-wide stability from local subsystem analysis follows from the particular structure of the interconnections between each subsystem, their corresponding controller, and neighboring subsystems. For systems with a linear form of power flow, robust feasibility of state and actuator constraints is achieved using a constraint tightening approach when formulating each MPC controller. Finally, the hierarchical control framework is applied to an example thermal fluid system that represents the fuel thermal management system of an aircraft. Simulation and experimental results clearly demonstrate the benefits of the proposed hierarchical control approach and the practical applicability to real physical systems with nonlinear dynamics, unknown disturbances, and actuator delays

    zonoLAB: A MATLAB toolbox for set-based control systems analysis using hybrid zonotopes

    Full text link
    This paper introduces zonoLAB, a MATLAB-based toolbox for set-based control system analysis using the hybrid zonotope set representation. Hybrid zonotopes have proven to be an expressive set representation that can exactly represent the reachable sets of mixed-logical dynamical systems and tightly approximate the reachable sets of nonlinear dynamic systems. Moreover, hybrid zonotopes can exactly represent the continuous piecewise linear control laws associated with model predictive control and the input-output mappings of neural networks with piecewise linear activation functions. The hybrid zonotope set representation is also highly exploitable, where efficient methods developed for mixed-integer linear programming can be directly used for set operation and analysis. The zonoLAB toolbox is designed to make these capabilities accessible to the dynamic systems and controls community, with functionality spanning fundamental operations with hybrid zonotope, constrained zonotope, and zonotope set representations, powerful set analysis tools, and general-purpose algorithms for reachability analysis of open- and closed-loop systems

    Graphene-Based Electromechanical Thermal Switches

    Get PDF
    Thermal management is an important challenge in modern electronics, avionics, automotive, and energy storage systems. While passive thermal solutions (like heat sinks or heat spreaders) are often used, actively modulating heat flow (e.g. via thermal switches or diodes) would offer additional degrees of control over the management of thermal transients and system reliability. Here we report the first thermal switch based on a flexible, collapsible graphene membrane, with low operating voltage, < 2 V. We also employ active-mode scanning thermal microscopy (SThM) to measure the device behavior and switching in real time. A compact analytical thermal model is developed for the general case of a thermal switch based on a double-clamped suspended membrane, highlighting the thermal and electrical design challenges. System-level modeling demonstrates the thermal trade-offs between modulating temperature swing and average temperature as a function of switching ratio. These graphene-based thermal switches present new opportunities for active control of fast (even nanosecond) thermal transients in densely integrated systems

    Study of different subcooling control strategies in order to enhance the performance of a heat pump

    Full text link
    [EN] The performance of vapor-compression systems working with subcritical refrigerants varies with the degree of subcooling. There is an optimal subcooling that maximizes efficiency. However, it depends on the operating conditions and the control of the system needs to be adapted. Most of the works available in literature are able to operate in optimal conditions only at the design point or if a system is designed to be able to adapt its subcooling, only complex control algorithms that usually are difficult to set and time-costly, are used. This work focuses on the study of the main variables influencing the optimal subcooling and analyzes two different control methodologies from the theoretical point of view. Based on the theoretical study a final control strategy is selected and tested experimentally. The reliability, stability and robustness of the selected strategy are experimentally demonstrated for a wide set of operating conditions. (c) 2018 Elsevier Ltd and IIR. All rights reserved.Part of the work presented was carried by Estefania Hervas Blasco with the financial support of a PhD scholarship from the Spanish government SFPI1500 x 074478XV0. The authors would like also to acknowledge the Spanish 'MINISTERIO DE ECONOMIA Y COMPETITIVIDAD', through the project. "MAXIMIZACION DE LA EFICIENCIA Y MINIMIZACION DEL IMPACTO AMBIENTAL DE BOMBAS DE CALOR PARA LA DESCARBONIZACION DE LA CALEFACCION/ACS EN LOS EDIFICIOS DECONSUMO CASI NULO" with the reference ENE2017-83665-C2-1-P for the given support.Hervas-Blasco, E.; Pitarch, M.; Navarro-Peris, E.; Corberán, JM. (2018). Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration. 88:324-336. https://doi.org/10.1016/j.ijrefrig.2018.02.003S3243368
    • …
    corecore