109 research outputs found

    Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip

    Get PDF
    In the medical community, there is a considerable interest in a diagnostic breath analyzer for ammonia that is selectively enough to measure in exhaled air and small enough for the small volumes available in such an application. An indirect measurement system for low gaseous ammonia concentrations has been miniaturized and integrated on a chip in order to reach this goal. The detection limit of the system was calculated to be 1.1 parts per billion (ppb). The response time was determined to be 1.6 min with a gas How of 50 ml/min. The required gas volume for one measurement is therefore sufficiently small, although sampling assistance is required for breath analysis. The selectivity of the system is sufficient to measure ammonia concentrations in the low-ppb range. The system is even sufficiently selective to be used in environments that contain elevated carbon dioxide levels, like exhaled air. The lower ammonia concentration expected in diagnostic breath analysis applications, 50 ppb, was demonstrated to be detectable

    Опорно-анкерне кріплення гірничих виробок вугільних шахт України

    Get PDF
    В статье анализируется опыт применения анкерной крепи горных выработок в горно- геологических условиях угольных шахт Украины. Представлены результаты практического применения.In the article experience of applications of roof bolting of mine workings in geological conditions of Ukrainian coal mines is analyzed. Results of a practical intrusion are presented

    Characterizing the multidimensionality of microplastics across environmental compartments

    Get PDF
    Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and mass characteristics of >60 000 individual microplastic particles as continuous distributions. Particles originate from samples taken from different aquatic compartments, including surface water and sediments from the marine and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-of-the-art FTIR- imaging, using the same automated imaging post-processing software. We introduce a workflow with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. We find that probability density functions (PDFs) for particle length follow power law distributions, with median slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the assessment of microplastic risks

    Global Modeled Sinking Characteristics of Biofouled Microplastic

    Get PDF
    Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stop sinking. We combine NEMO‐MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle‐tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size‐dependent as opposed to density‐dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories take the longest time to reach their first sinking depth (relative to larger particles). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 mm and 10 μm do not sink within the 90‐day simulation time. This suggests that in addition to the comparatively well‐known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1 mm–10 μm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas in the equatorial Pacific they are more dependent on biofouling. The qualitative impacts of seasonality on sinking timescales are small, however, localised sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget

    Modeling submerged biofouled microplastics and their vertical trajectories

    Get PDF
    The fate of (micro)plastic particles in the open ocean is controlled by physical and biological processes. Here, we model the effects of biofouling on the subsurface vertical distribution of spherical, virtual plastic particles with radii of 0.01–1 mm. For the physics, four vertical velocity terms are included: advection, wind-driven mixing, tidally induced mixing, and the sinking velocity of the biofouled particle. For the biology, we simulate the attachment, growth and loss of algae on particles. We track 10,000 particles for one year in three different regions with distinct biological and physical properties: the low productivity region of the North Pacific Subtropical Gyre, the high productivity region of the Equatorial Pacific and the high mixing region of the Southern Ocean. The growth of biofilm mass in the euphotic zone and loss of mass below the euphotic zone result in the oscillatory behaviour of particles, where the larger (0.1–1.0 mm) particles have much shorter average oscillation lengths ( 5000 m). Our results show that the vertical movement of particles is mainly affected by physical (wind-induced mixing) processes within the mixed layer and biological (biofilm) dynamics below the mixed layer. Furthermore, positively buoyant particles with radii of 0.01–1.0 mm can sink far below the euphotic zone and mixed layer in regions with high near-surface mixing or high biological activity. This work can easily be coupled to other models to simulate open-ocean biofouling dynamics, in order to reach a better understanding of where ocean (micro)plastic ends up

    Global Plastic Pollution Observation System to Aid Policy

    Get PDF
    Plastic pollution has become one of the most pressing environmental challenges and has received commensurate widespread attention. Although it is a top priority for policymakers and scientists alike, the knowledge required to guide decisions, implement mitigation actions, and assess their outcomes remains inadequate. We argue that an integrated, global monitoring system for plastic pollution is needed to provide comprehensive, harmonized data for environmental, societal, and economic assessments. The initial focus on marine ecosystems has been expanded here to include atmospheric transport and terrestrial and freshwater ecosystems. An earth-system-level plastic observation system is proposed as a hub for collecting and assessing the scale and impacts of plastic pollution across a wide array of particle sizes and ecosystems including air, land, water, and biota and to monitor progress toward ameliorating this problem. The proposed observation system strives to integrate new information and to identify pollution hotspots (i.e., production facilities, cities, roads, ports, etc.) and expands monitoring from marine environments to encompass all ecosystem types. Eventually, such a system will deliver knowledge to support public policy and corporate contributions to the relevant United Nations (UN) Sustainable Development Goals (SDGs)

    Modelling submerged biofouled microplastics and their vertical trajectories

    Get PDF
    The fate of (micro)plastic particles in the open ocean is controlled by biological and physical processes. Here, we model the effects of biofouling on the subsurface vertical distribution of spherical, virtual plastic particles with radii of 0.01–1 mm. The biological specifications include the attachment, growth and loss of algae on particles. The physical specifications include four vertical velocity terms: advection, wind-driven mixing, tidally induced mixing and the sinking velocity of the biofouled particle. We track 10 000 particles for 1 year in three different regions with distinct biological and physical properties: the low-productivity region of the North Pacific Subtropical Gyre, the high-productivity region of the equatorial Pacific and the high mixing region of the Southern Ocean. The growth of biofilm mass in the euphotic zone and loss of mass below the euphotic zone result in the oscillatory behaviour of particles, where the larger (0.1–1.0 mm) particles have much shorter average oscillation lengths (5000 m). Our results show that the vertical movement of particles is mainly affected by physical (wind-induced mixing) processes within the mixed-layer and biological (biofilm) dynamics below the mixed layer. Furthermore, positively buoyant particles with radii of 0.01–1.0 mm can sink far below the euphotic zone and mixed layer in regions with high near-surface mixing or high biological activity. This work can easily be coupled to other models to simulate open-ocean biofouling dynamics, in order to reach a better understanding of where ocean (micro)plastic ends up

    Training the next generation of plastics pollution researchers: tools, skills and career perspectives in an interdisciplinary and transdisciplinary field

    Get PDF
    Plastics pollution research attracts scientists from diverse disciplines. Many Early Career Researchers (ECRs) are drawn to this field to investigate and subsequently mitigate the negative impacts of plastics. Solving the multi-faceted plastic problem will always require breakthroughs across all levels of science disciplinarity, which supports interdisciplinary discoveries and underpins transdisciplinary solutions. In this context, ECRs have the opportunity to work across scientific discipline boundaries and connect with different stakeholders, including industry, policymakers and the public. To fully realize their potential, ECRs need to develop strong communication and project management skills to be able to effectively interface with academic peers and non-academic stakeholders. At the end of their formal education, many ECRs will choose to leave academia and pursue a career in private industry, government, research institutes or non-governmental organizations (NGOs). Here we give perspectives on how ECRs can develop the skills to tackle the challenges and opportunities of this transdisciplinary research field and how these skills can be transferred to different working sectors. We also explore how advisors can support an ECRs’ growth through inclusive leadership and coaching. We further consider the roles each party may play in developing ECRs into mature scientists by helping them build a strong foundation, while also critically assessing problems in an interdisciplinary and transdisciplinary context. We hope these concepts can be useful in fostering the development of the next generation of plastics pollution researchers so they can address this global challenge more effectively
    corecore