6,272 research outputs found
Towards electron transport measurements in chemically modified graphene: The effect of a solvent
Chemical functionalization of graphene modifies the local electron density of
the carbon atoms and hence electron transport. Measuring these changes allows
for a closer understanding of the chemical interaction and the influence of
functionalization on the graphene lattice. However, not only chemistry, in this
case diazonium chemistry, has an effect on the electron transport. Latter is
also influenced by defects and dopants resulting from different processing
steps. Here, we show that solvents used in the chemical reaction process change
the transport properties. In more detail, the investigated combination of
isopropanol and heating treatment reduces the doping concentration and
significantly increases the mobility of graphene. Furthermore, the isopropanol
treatment alone increases the concentration of dopants and introduces an
asymmetry between electron and hole transport which might be difficult to
distinguish from the effect of functionalization. The results shown in this
work demand a closer look on the influence of solvents used for chemical
modification in order to understand their influence
Welding, brazing, and soldering handbook
Handbook gives information on the selection and application of welding, brazing, and soldering techniques for joining various metals. Summary descriptions of processes, criteria for process selection, and advantages of different methods are given
Transverse excitations of ultracold matter waves upon propagation past abrupt waveguide changes
The propagation of ultracold atomic gases through abruptly changing waveguide
potentials is examined in the limit of non-interacting atoms. Time-independent
scattering calculations of microstructured waveguides with discontinuous
changes in the transverse harmonic binding potentials are used to mimic
waveguide perturbations and imperfections. Three basic configurations are
examined: step-like, barrier-like and well-like with waves incident in the
ground mode. At low energies, the spectra rapidly depart from single-moded,
with significant transmission and reflection of excited modes. The high-energy
limit sees 100 percent transmission, with the distribution of the transmitted
modes determined simply by the overlap of the mode wave functions and
interference.Comment: 20 pages, 7 figures, under review PR
Long-lived refractive index changes induced by femtosecond ionization in gas-filled single-ring photonic crystal fibers
We investigate refractive index changes caused by femtosecond photoionization
in a gas-filled hollow-core photonic crystal fiber. Using spatially-resolved
interferometric side-probing, we find that these changes live for tens of
microseconds after the photoionization event - eight orders of magnitude longer
than the pulse duration. Oscillations in the megahertz frequency range are
simultaneously observed, caused by mechanical vibrations of the thin-walled
capillaries surrounding the hollow core. These two non-local effects can affect
the propagation of a second pulse that arrives within their lifetime, which
works out to repetition rates of tens of kilohertz. Filling the fiber with an
atomically lighter gas significantly reduces ionization, lessening the strength
of the refractive index changes. The results will be important for
understanding the dynamics of gas-based fiber systems operating at high
intensities and high repetition rates, when temporally non-local interactions
between successive laser pulses become relevant.Comment: 5 pages with four figures and one tabl
Myelography and the 20th Century Localization of Spinal Cord Lesions
In this article, we commemorate the centenary of myelography, a neuroradiological procedure that, despite certain disadvantages, significantly contributed to the diagnosis and localization of spinal cord lesions during the 20th century. From the start, the use of myelography was characterized by different views regarding the potential dangers associated with the prolonged exposure of a "foreign body" to the central nervous system. Such differences in attitude resulted in divergent myelography practices; its precise indications, technical performance, and adopted contrast material remaining subject to variability until the procedure were eventually replaced by MRI at the close of the 20th century
Integrated Structure and Semantics for Reo Connectors and Petri Nets
In this paper, we present an integrated structural and behavioral model of
Reo connectors and Petri nets, allowing a direct comparison of the two
concurrency models. For this purpose, we introduce a notion of connectors which
consist of a number of interconnected, user-defined primitives with fixed
behavior. While the structure of connectors resembles hypergraphs, their
semantics is given in terms of so-called port automata. We define both models
in a categorical setting where composition operations can be elegantly defined
and integrated. Specifically, we formalize structural gluings of connectors as
pushouts, and joins of port automata as pullbacks. We then define a semantical
functor from the connector to the port automata category which preserves this
composition. We further show how to encode Reo connectors and Petri nets into
this model and indicate applications to dynamic reconfigurations modeled using
double pushout graph transformation
Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins
None of the 28 identified point mutations in tafazzin (Taz1p), which is the mutant gene product associated with Barth syndrome (BTHS), has a biochemical explanation. In this study, endogenous Taz1p was localized to mitochondria in association with both the inner and outer mitochondrial membranes facing the intermembrane space (IMS). Unexpectedly, Taz1p does not contain transmembrane (TM) segments. Instead, Taz1p membrane association involves a segment that integrates into, but not through, the membrane bilayer. Residues 215–232, which were predicted to be a TM domain, were identified as the interfacial membrane anchor by modeling four distinct BTHS mutations that occur at conserved residues within this segment. Each Taz1p mutant exhibits altered membrane association and is nonfunctional. However, the basis for Taz1p dysfunction falls into the following two categories: (1) mistargeting to the mitochondrial matrix or (2) correct localization associated with aberrant complex assembly. Thus, BTHS can be caused by mutations that alter Taz1p sorting and assembly within the mitochondrion, indicating that the lipid target of Taz1p is resident to IMS-facing leaflets
Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases
We present a combined theoretical and experimental study of spatio-temporal
propagation effects in terahertz (THz) generation in gases using two-color
ionizing laser pulses. The observed strong broadening of the THz spectra with
increasing gas pressure reveals the prominent role of spatio-temporal reshaping
and of a plasma-induced blue-shift of the pump pulses in the generation
process. Results obtained from (3+1)-dimensional simulations are in good
agreement with experimental findings and clarify the mechanisms responsible for
THz emission
- …