92 research outputs found

    Analysis of Gingival Tissue and Salivary Interleukin-22 (IL-22) Levels in Periodontal Health and Disease

    Get PDF
    BACKGROUND: Tissue homeostasis represents a delicate balance between anabolic and catabolic activities manifested by the resident cells and their cytokines. Cytokines play a crucial role in periodontal tissue homeostasis and disease pathogenesis. Interleukin- 22 is a novel cytokine that has been recently highlighted owing to its biological significance in the modulation of tissue responses during inflammation. Evidence of IL-22 in epithelial immune response and in T cell mediated diseases suggests that periodontal tissue might serve as an potential cellular source. AIM OF THE STUDY: To evaluate the gingival tissue and salivary levels of IL-22 in periodontal health and disease and also to evaluate if the tissue levels correlated with the salivary levels. MATERIALS AND METHODS: Twenty patients were included in the study. The study group was segregated into health and chronic periodontitis group. Gingival tissue and saliva were collected from both the groups and the protein levels ofIL-22 was detected using ELISA. Statistical analysis was done using Mann-Whitney U test and Spearman’s correlation analysis. RESULTS: The gingival tissue and salivary levels of IL-22 in disease showed a marginal increase that was not statistically significant (p = 0.4813). There was also a weak correlation between the gingival tissue and salivary levels at (p = - 0.36). CONCLUSION: IL-22 is a unique cytokine expressed in the periodontal tissues, known to exert biphasic effects, yet warrants further investigation for a better understanding of its role in the pathophysiology of periodontal disease

    Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization

    Get PDF
    Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm: egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAl1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAl1/BAl3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAl1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm: egg fusion

    Establishing Consensus on Essential Resources for Musculoskeletal Trauma Care Worldwide: A Modified Delphi Study

    Full text link
    BACKGROUND: Despite evidence that formalized trauma systems enhance patient functional outcomes and decrease mortality rates, there remains a lack of such systems globally. Critical to trauma systems are the equipment, materials, and supplies needed to support care, which vary in availability regionally. The purpose of the present study was to identify essential resources for musculoskeletal trauma care across diverse resource settings worldwide. METHODS: The modified Delphi method was utilized, with 3 rounds of electronic surveys. Respondents consisted of 1 surgeon with expertise in musculoskeletal trauma per country. Participants were identified with use of the AO Trauma, AO Alliance, Orthopaedic Trauma Association, and European Society for Trauma and Emergency Surgery networks. Respondents rated resources on a Likert scale from 1 (most important) to 9 (least important). The "most essential" resources were classified as those rated ≀2 by ≄75% of the sampled group. RESULTS: One hundred and three of 111 invited surgeons completed the first survey and were included throughout the subsequent rounds (representing a 93% response rate). Most participants were fellowship-trained (78%) trauma and orthopaedic surgeons (90%) practicing in an academic setting (62%), and 46% had >20 years of experience. Respondents represented low-income and lower-middle-income countries (LMICs; 35%), upper-middle income countries (UMICs; 30%), and high-income countries (HICs; 35%). The initial survey identified 308 unique resources for pre-hospital, in-hospital, and post-hospital phases of care, of which 71 resources achieved consensus as the most essential. There was a significant difference (p < 0.0167) in ratings between income groups for 16 resources, all of which were related to general trauma care rather than musculoskeletal injury management. CONCLUSIONS: There was agreement on a core list of essential musculoskeletal trauma care resources by respondents from LMICs, UMICs, and HICs. All significant differences in resource ratings were related to general trauma management. This study represents a first step toward establishing international consensus and underscores the need to prioritize resources that are locally available. The information can be used to develop effective guidelines and policies, create best-practice treatment standards, and advocate for necessary resources worldwide. CLINICAL RELEVANCE: This study utilized the Delphi method representing expert opinion; however, this work did not examine patient management and therefore does not have a clinical Level of Evidence

    Pannexin 1 channels facilitate communication between T cells to restrict the severity of airway inflammation

    Get PDF
    Allergic airway inflammation is driven by type-2 CD4(+) T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1(-/-) mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1(-/-) mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1(-/-) mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1(-/-) mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease

    A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis

    Get PDF
    Rheumatoid arthritis is characterized by progressive joint inflammation and affects similar to 1% of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis

    Peer Victimization and Dysfunctional Reward Processing: ERP and Behavioral Responses to Social and Monetary Rewards

    Get PDF
    Peer victimization (or bullying) is a known risk factor for depression, especially among youth. However, the mechanisms connecting victimization experience to depression symptoms remains unknown. As depression is known to be associated with neural blunting to monetary rewards, aberrant responsiveness to social rewards may be a key deficit connecting socially stressful experiences with later depression. We, therefore, sought to determine whether adolescents’ experiences with social stress would be related to their current response to social rewards over less socially relevant monetary rewards. Neural responses to monetary and social rewards were measured using event-related potentials (ERPs) to peer acceptance and rejection feedback (Island Getaway task) and to monetary reward and loss feedback (Doors task) in a sample of 56 late adolescents/emerging young adults followed longitudinally since preschool. In the Island Getaway task, participants voted whether to “keep” or “kick out” each co-player, providing an index of prosocial behavior, and then received feedback about how each player voted for the participant. Analyses tested whether early and recent peer victimization was related to response to rewards (peer acceptance or monetary gains), residualized for response to losses (peer rejection or monetary losses) using the reward positivity (RewP) component. Findings indicated that both experiencing greater early and greater recent peer victimization were significantly associated with participants casting fewer votes to keep other adolescents (“Keep” votes) and that greater early peer victimization was associated with reduced neural response to peer acceptance. Early and recent peer victimization were significantly more associated with neural response to social than monetary rewards. Together, these findings suggest that socially injurious experiences such as peer victimization, especially those occurring early in childhood, relate to two distinct but important findings: that early victimization is associated with later reduced response to peer acceptance, and is associated with later tendency to reject peers. Findings also suggest that there is evidence of specificity to reward processing of different types; thus, future research should expand studies of reward processing beyond monetary rewards to account for the possibility that individual differences may be related to other, more relevant, reward types

    Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis

    Get PDF
    Apoptotic cells release ‘find-me’ signals at the earliest stages of death to recruit phagocytes1. The nucleotides ATP and UTP represent one class of find-me signals2, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 over-expression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the ‘selective’ plasma membrane permeability of early apoptotic cells to specific dyes3. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    The quijote simulations

    Get PDF
    The Quijote simulations are a set of 44,100 full N-body simulations spanning more than 7000 cosmological models in the hyperplane. At a single redshift, the simulations contain more than 8.5 trillion particles over a combined volume of 44,100 each simulation follows the evolution of 2563, 5123, or 10243 particles in a box of 1 h -1 Gpc length. Billions of dark matter halos and cosmic voids have been identified in the simulations, whose runs required more than 35 million core hours. The Quijote simulations have been designed for two main purposes: (1) to quantify the information content on cosmological observables and (2) to provide enough data to train machine-learning algorithms. In this paper, we describe the simulations and show a few of their applications. We also release the petabyte of data generated, comprising hundreds of thousands of simulation snapshots at multiple redshifts; halo and void catalogs; and millions of summary statistics, such as power spectra, bispectra, correlation functions, marked power spectra, and estimated probability density functions
    • 

    corecore