782 research outputs found

    The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils

    Get PDF
    The 17-residue N-terminus (httNT) directly flanking the polyQ sequence in huntingtin (htt) N-terminal fragments plays a crucial role in initiating and accelerating the aggregation process that is associated with Huntington's disease pathogenesis. Here we report on magic-angle-spinning solid-state NMR studies of the amyloid-like aggregates of an htt N-terminal fragment. We find that the polyQ portion of this peptide exists in a rigid, dehydrated amyloid core that is structurally similar to simpler polyQ fibrils and may contain antiparallel β-sheets. In contrast, the httNT sequence in the aggregates is composed in part of a well-defined helix, which likely also exists in early oligomeric aggregates. Further NMR experiments demonstrate that the N-terminal helical segment displays increased dynamics and water exposure. Given its specific contribution to the initiation, rate, and mechanism of fibril formation, the helical nature of httNT and its apparent lack of effect on the polyQ fibril core structure seem surprising. The results provide new details about these disease-associated aggregates and also provide a clear example of an amino acid sequence that greatly enhances the rate of amyloid formation while itself not taking part in the amyloid structure. There is an interesting mechanistic analogy to recent reports pointing out the early-stage contributions of transient intermolecular helix-helix interactions in the aggregation behavior of various other amyloid fibrils. © 2011 American Chemical Society

    Analysis of Social Network Data Mining for Security Intelligence Privacy Machine Learning

    Get PDF
    The Modern communication on the Internet platform is most responsive through social media. Social media has changed and is still reshaping how we share our thoughts and emotions in communication. It has introduced a constant real-time communication pattern that was before unheard of. Young and old, organizations, governmental agencies, professional associations, etc., all have social media accounts that they use exclusively for communication with other users. Social media also acts as a powerful network engine that connects users regardless of where they are in the world. The development of global communication will greatly benefit from the availability of this new communication platform in the future. Consequently, there is a pressing need to research usage trends. Therefore, it is vital to investigate social media platform usage trends in order to develop automated systems that intelligence services can use to help avert national security incidents. Through the use of social media data mining, this research study suggests an automated machine learning model that can improve speedy response to crises involving national and International security

    Multifocal Epithelial Hyperplasia of Oral Cavity Expressing HPV 16 Gene: A Rare Entity

    Get PDF
    Focal epithelial hyperplasia is a rare contagious disease caused by human papilloma virus. Usually HPV involves either cutaneous or mucosal surfaces, whereas concomitant mucocutaneous involvement is extremely rare. We report such a unique case of multifocal epithelial hyperplasia involving multiple sites of oral cavity along with skin lesions in a 65-year-old female. We also discuss the probable multifactorial etiology and variable clinical presentations of the lesions, including evidence of HPV 16 expression, as detected by polymerase chain reaction. The present report illustrates the need for careful examination and prompt diagnosis of the disease, as it might be associated with high risk genotypes such as HPV 16 and 18

    Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst

    Get PDF
    The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon veil was used as the negative electrode and activated carbon with a Fe-based catalyst as the positive electrode. The red-ox reactions on the anode and cathode, self-charged these electrodes creating an internal electrochemical double layer capacitor. Galvanostatic discharges were performed at different current and time pulses. Supercapacitive-MFC (SC-MFC) was also tested at four different solution conductivities. SC-MFC had an equivalent series resistance (ESR) decreasing from 6.00 Ω to 3.42 Ω in four solutions with conductivity between 2.5 mScm−1 and 40 mScm−1. The ohmic resistance of the positive electrode corresponded to 75–80% of the overall ESR. The highest performance was achieved with a solution conductivity of 40 mS cm−1 and this was due to the positive electrode potential enhancement for the utilization of Fe-based catalysts. Maximum power was 36.9mW (36.9Wm−3) that decreased with increasing pulse time. SC-MFC was subjected to 4520 cycles (8 days) with a pulse time of 5 s (ipulse 55 mA) and a self-recharging time of 150 s showing robust reproducibility

    Nonperturbative chemical modification of graphene for protein micropatterning

    No full text
    International audienceGraphene's extraordinary physical properties and its planar geometry make it an ideal candidate for a wide array of applications, many of which require controlled chemical modification and the spatial organization of molecules on its surface. In particular, the ability to functionalize and micropattern graphene with proteins is relevant to bioscience applications such as biomolecular sensors, single-cell sensors, and tissue engineering.Wereport a general strategy for the noncovalent chemical modification of epitaxial graphene for protein immobilization and micropatterning. We show that bifunctional molecule pyrenebutanoic acid-succinimidyl ester (PYR-NHS), composed of the hydrophobic pyrene and the reactive succinimide ester group, binds to graphene noncovalently but irreversibly. We investigate whether the chemical treatment perturbs the electronic band structure of graphene using X-ray photoemission (XPS) and Raman spectroscopy. Our results show that the sp2 hybridization remains intact and that the π band maintains its characteristic Lorentzian shape in the Raman spectra. The modified graphene surfaces, which bind specifically to amines in proteins, are micropatterned with arrays of fluorescently labeled proteins that are relevant to glucose sensors (glucose oxidase) and cell sensor and tissue engineering applications (laminin)

    Impact of the COVID-19 pandemic on interventional cardiology fellowship training in the New York metropolitan area: A perspective from the United States epicenter

    Get PDF
    © 2020 Wiley Periodicals, Inc. Background: The healthcare burden posed by the coronavirus disease 2019 (COVID-19) pandemic in the New York Metropolitan area has necessitated the postponement of elective procedures resulting in a marked reduction in cardiac catheterization laboratory (CCL) volumes with a potential to impact interventional cardiology (IC) fellowship training. Methods: We conducted a web-based survey sent electronically to 21 Accreditation Council for Graduate Medical Education accredited IC fellowship program directors (PDs) and their respective fellows. Results: Fourteen programs (67%) responded to the survey and all acknowledged a significant decrease in CCL procedural volumes. More than half of the PDs reported part of their CCL being converted to inpatient units and IC fellows being redeployed to COVID-19 related duties. More than two-thirds of PDs believed that the COVID-19 pandemic would have a moderate (57%) or severe (14%) adverse impact on IC fellowship training, and 21% of the PDs expected their current fellows\u27 average percutaneous coronary intervention (PCI) volume to be below 250. Of 25 IC fellow respondents, 95% expressed concern that the pandemic would have a moderate (72%) or severe (24%) adverse impact on their fellowship training, and nearly one-fourth of fellows reported performing fewer than 250 PCIs as of March 1st. Finally, roughly one-third of PDs and IC fellows felt that there should be consideration of an extension of fellowship training or a period of early career mentorship after fellowship. Conclusions: The COVID-19 pandemic has caused a significant reduction in CCL procedural volumes that is impacting IC fellowship training in the NY metropolitan area. These results should inform professional societies and accreditation bodies to offer tailored opportunities for remediation of affected trainees

    Survey of Nutrition Education Among Medical Students

    Get PDF
    Introduction: The current literature regarding both specific interventions and the current level of nutrition education in the United States is scarce. The purpose of this paper is to provide medical student perspectives on both the degree and necessity of nutrition education during medical school. Methods: Medicine in Motion (MM) is a non-profit student-run organization founded in 2018 that aims to address burnout in medicine through physical activity, community service, and philanthropy. MM issued a survey to nine of its chapters in January 2021 to assess a range of topics including burnout, physical activity, and nutrition education. Results: Of 5500 invited students, 1182 (21.5%) responded. An average of 1.2 hours of formal nutrition education per year was reported across all participants. Students who received any degree of nutritional education reported 2.9 hours per year. Most students (57.6%) had not participated in a medical school course that provided formal education in nutrition. Of those that did participate in a nutrition course (42.4%), the course was required for 84.7% of students and the majority (80.1%) received 0-10 hours of nutrition education. Most respondents (88.7%) reported that requiring formal nutrition education should be a graduation requirement and a similar number of students (89.3%) believe medical students should receive formal training on nutrition counseling for patients. The majority (93.3%) of students either somewhat or strongly agreed that understanding the effects of nutrition/eating decisions on the human body is critical to maximizing patient care. Conclusion: Based on prior studies, physicians feel underprepared to provide nutrition counseling to their patients despite the large role poor diet plays in the burden of disease. Most medical students in this cohort believe that understanding nutrition is vital to maximize patient care. Funding and curricular changes should be allocated towards expanding the nutrition curriculum across U.S. medical schools

    Polyglutamine Disruption of the Huntingtin Exon 1 N Terminus Triggers a Complex Aggregation Mechanism

    Get PDF
    Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTTNT) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTTNT peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in HTTNT, in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with HTTNT cores and exposed polyQ. In a second step, a new, amyloid-like aggregate is formed with a core composed of both HTTNT and polyQ. The results indicate unprecedented complexity in how primary sequence controls aggregation within a substantially disordered peptide and have implications for the molecular mechanism of Huntington\u27s disease
    • …
    corecore