1,038 research outputs found

    On the π\pi and KK as qqˉq \bar q Bound States and Approximate Nambu-Goldstone Bosons

    Full text link
    We reconsider the two different facets of π\pi and KK mesons as qqˉq \bar q bound states and approximate Nambu-Goldstone bosons. We address several topics, including masses, mass splittings between π\pi and ρ\rho and between KK and KK^*, meson wavefunctions, charge radii, and the KπK-\pi wavefunction overlap.Comment: 15 pages, late

    Tidal disruption of dark matter halos around proto-globular clusters

    Full text link
    Tidal disruption of dark matter halos around proto-globular clusters in a halo of a small galaxy is studied in the context of the hierarchical clustering scenario by using semi-cosmological N-body/SPH simulations assuming the standard cold dark matter model (Ω0=1\Omega_0 = 1). Our analysis on formation and evolution of the galaxy and its substructures archives until z=2.0z = 2.0. In such a high-redshift universe, the Einstein-de Sitter universe is still a good approximation for a recently favored Λ\Lambda-dominated universe, and then our results does not depend on the choice of cosmology. In order to resolve small gravitationally-bound clumps around galaxies and consider radiative cooling below T=104KT = 10^4 K, we adopt a fine mass resolution (m_{\rm SPH} = 1.12 \times 10^3 \Msun). Because of the cooling, each clump immediately forms a `core-halo' structure which consists of a baryonic core and a dark matter halo. The tidal force from the host galaxy mainly strips the dark matter halo from clumps and, as a result, theses clumps get dominated by baryons. Once a clump is captured by the host halo, its mass drastically decreases each pericenter passage. At z=2z = 2, more than half of the clumps become baryon dominated systems (baryon mass/total mass >0.5> 0.5). Our results support the tidal evolution scenario of the formation of globular clusters and baryon dominated dwarf galaxies in the context of the cold dark matter universe.Comment: 9page, 13 figures. Accepted for publication in ApJ. A high-resolution PDF of the paper can be obtained from http://th.nao.ac.jp/~takayuki/ApJ05

    Quasi-One-Dimensional Spin Dynamics in dd-Electron Heavy-Fermion Metal Y1x_{1-x}Scx_xMn2_2

    Full text link
    Slow spin fluctuations (ν<1012\nu < 10^{12} s1^-1) observed by the muon spin relaxation technique in Y1x_{1-x}Scx_xMn2_2 exhibits a power law dependence on temperature (νTα\nu \propto T^\alpha), where the power converges asymptotically to unity (α1\alpha\rightarrow 1) as the system moves away from spin-glass instability with increasing Sc content xx. This linear TT dependence, which is common to that observed in LiV2_2O4_4, is in line with the prediction of the "intersecting Hubbard chains" model for a metallic pyrochlore lattice, suggesting that the geometrical constraints to t2g bands specific to the pyrochlore structure serve as a basis of the dd-electron heavy-fermion state.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Magnetic Instability of Pr3Ru4Sn13

    Full text link
    We report on the quantum criticality of Pr3_3Ru4_4Sn13_{13} revealed by our new material research. Pr3_3Ru4_4Sn13_{13} has been synthesized by flux growth and characterized by single X-ray, powder X-ray, and powder neutron diffraction measurements. The compound adopts a Yb3_3Rh4_4Sn13_{13}-type structure with a cubic Pm3ˉ\bar{3}n. From the magnetization at 1 T, the effective magnetic moment was estimated to be 3.58 μB\mu _B per Pr3+^{3+}, suggesting that the magnetism is mainly contributed by Pr3+^{3+} ions. The specific heat and magnetization show an anomaly at TN=7.5T_{N} = 7.5 ~ K owing to the phase transition. The muon spin rotation and relaxation (μ\muSR) time spectra exhibit clear oscillations below TNT_N. This suggests that the phase is magnetically ordered. The volume fraction of the magnetic phase estimated from the initial asymmetry is around ten percent. In addition, spin fluctuations were observed at low temperatures. These results provide microscopic evidence that the material is closest to the antiferromagnetically quantum critical point with a partial order among Pr3_3T4T_4Sn13_{13} (T=T= Co, Ru, Rh).Comment: 14 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Towards understanding the relation between the gas and the attenuation in galaxies at kpc scales

    Get PDF
    [abridged] Aims. The aim of the present paper is to provide new and more detailed relations at the kpc scale between the gas surface density and the face-on optical depth directly calibrated on galaxies, in order to compute the attenuation not only for semi-analytic models but also observationally as new and upcoming radio observatories are able to trace gas ever farther in the Universe. Methods. We have selected a sample of 4 nearby resolved galaxies and a sample of 27 unresolved galaxies from the Herschel Reference Survey and the Very Nearby Galaxies Survey, for which we have a large set of multi-wavelength data from the FUV to the FIR including metallicity gradients for resolved galaxies, along with radio HI and CO observations. For each pixel in resolved galaxies and for each galaxy in the unresolved sample, we compute the face-on optical depth from the attenuation determined with the CIGALE SED fitting code and an assumed geometry. We determine the gas surface density from HI and CO observations with a metallicity-dependent XCO factor. Results. We provide new, simple to use, relations to determine the face-on optical depth from the gas surface density, taking the metallicity into account, which proves to be crucial for a proper estimate. The method used to determine the gas surface density or the face-on optical depth has little impact on the relations except for galaxies that have an inclination over 50d. Finally, we provide detailed instructions on how to compute the attenuation practically from the gas surface density taking into account possible information on the metallicity. Conclusions. Examination of the influence of these new relations on simulated FUV and IR luminosity functions shows a clear impact compared to older oft-used relations, which in turn could affect the conclusions drawn from studies based on large scale cosmological simulations.Comment: 24 pages, 21 figures, accepted for publication in A&

    Clinical Pharmacy: Looking 20 Years Back… Looking 20 Years Forward

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90209/1/phco.20.16.235S.35021.pd

    Comparing [CII], HI, and CO dynamics of nearby galaxies

    Get PDF
    The HI and CO components of the interstellar medium (ISM) are usually used to derive the dynamical mass M_dyn of nearby galaxies. Both components become too faint to be used as a tracer in observations of high-redshift galaxies. In those cases, the 158 μ\mum line of atomic carbon [CII] may be the only way to derive M_dyn. As the distribution and kinematics of the ISM tracer affects the determination of M_dyn, it is important to quantify the relative distributions of HI, CO and [CII]. HI and CO are well-characterised observationally, however, for [CII] only very few measurements exist. Here we compare observations of CO, HI, and [CII] emission of a sample of nearby galaxies, drawn from the HERACLES, THINGS and KINGFISH surveys. We find that within R_25, the average [CII] exponential radial profile is slightly shallower than that of the CO, but much steeper than the HI distribution. This is also reflected in the integrated spectrum ("global profile"), where the [CII] spectrum looks more like that of the CO than that of the HI. For one galaxy, a spectrally resolved comparison of integrated spectra was possible; other comparisons were limited by the intrinsic line-widths of the galaxies and the coarse velocity resolution of the [CII] data. Using high-spectral-resolution SOFIA [CII] data of a number of star forming regions in two nearby galaxies, we find that their [CII] linewidths agree better with those of the CO than the HI. As the radial extent of a given ISM tracer is a key input in deriving M_dyn from spatially unresolved data, we conclude that the relevant length-scale to use in determining M_dyn based on [CII] data, is that of the well-characterised CO distribution. This length scale is similar to that of the optical disk.Comment: Accepted for publication in the Astronomical Journa
    corecore