1,791 research outputs found

    Classifying Public Key Certificates

    Full text link
    In spite of the fact that there are several companies that (try to) sell public key certificates, there is still no unified or standardized classification scheme that can be used to compare and put into perspective the various offerings. In this paper, we try to start filling this gap and propose a four-dimensional scheme that can be used to uniformly describe and classify public key certificates. The scheme distinguishes between (i) who owns a certificate, (ii) how the certificate owner is registered, (iii) on what medium the certificate (or the private key, respectively) is stored, and (iv) what type of functionality the certificate is intended to be used for. We think that using these or similar criteria to define and come up with unified or even standardized classes of public key certificate is useful and urgently needed in practice

    Categorization, Designation, and Regionalization of Emergency Care: Definitions, a Conceptual Framework, and Future Challenges

    Full text link
    This article reflects the proceedings of a breakout session, “Beyond ED Categorization—Matching Networks to Patient Needs,” at the 2010 Academic Emergency Medicine consensus conference, “Beyond Regionalization: Integrated Networks of Emergency Care.” It is based on concepts and areas of priority identified and developed by the authors and participants at the conference. The paper first describes definitions fundamental to understanding the categorization, designation, and regionalization of emergency care and then considers a conceptual framework for this process. It also provides a justification for a categorization system being integrated into a regionalized emergency care system. Finally, it discusses potential challenges and barriers to the adoption of a categorization and designation system for emergency care and the opportunities for researchers to study the many issues associated with the implementation of such a system.ACADEMIC EMERGENCY MEDICINE 2010; 17:1306–1311 © 2010 by the Society for Academic Emergency MedicinePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79324/1/j.1553-2712.2010.00932.x.pd

    Important Historical Efforts at Emergency Department Categorization in the United States and Implications for Regionalization

    Full text link
    This article is drawn from a report created for the American College of Emergency Physicians (ACEP) Emergency Department (ED) Categorization Task Force and also reflects the proceedings of a breakout session, “Beyond ED Categorization—Matching Networks to Patient Needs,” at the 2010 Academic Emergency Medicine consensus conference, “Beyond Regionalization: Integrated Networks of Emergency Care.” The authors describe a brief history of the significant national and state efforts at categorization and suggest reasons why many of these efforts failed to persevere or gain wider implementation. The history of efforts to categorize hospital (and ED) emergency services demonstrates recognition of the potential benefits of categorization, but reflects repeated failures to implement full categorization systems or limited excursions into categorization through licensing of EDs or designation of receiving and referral facilities. An understanding of the history of hospital and ED categorization could better inform current efforts to develop categorization schemes and processes.ACADEMIC EMERGENCY MEDICINE 2010; 17:e154–e160 © 2010 by the Society for Academic Emergency MedicinePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79214/1/j.1553-2712.2010.00931.x.pd

    Practical Improvements of Profiled Side-Channel Attacks on a Hardware Crypto-Accelerator

    Get PDF
    Abstract. This article investigates the relevance of the theoretical frame-work on profiled side-channel attacks presented by F.-X. Standaert et al. at Eurocrypt 2009. The analyses consist in a case-study based on side-channel measurements acquired experimentally from a hardwired crypto-graphic accelerator. Therefore, with respect to previous formal analyses carried out on software measurements or on simulated data, the inves-tigations we describe are more complex, due to the underlying chip’s architecture and to the large amount of algorithmic noise. In this dif-ficult context, we show however that with an engineer’s mindset, two techniques can greatly improve both the off-line profiling and the on-line attack. First, we explore the appropriateness of different choices for the sensitive variables. We show that a skilled attacker aware of the regis-ter transfers occurring during the cryptographic operations can select the most adequate distinguisher, thus increasing its success rate. Sec-ond, we introduce a method based on the thresholding of leakage data to accelerate the profiling or the matching stages. Indeed, leveraging on an engineer’s common sense, it is possible to visually foresee the shape of some eigenvectors thereby anticipating their estimation towards their asymptotic value by authoritatively zeroing weak components containing mainly non-informational noise. This method empowers an attacker, in that it saves traces when converging towards correct values of the secret. Concretely, we demonstrate a 5 times speed-up in the on-line phase of the attack.

    Adjusting Laser Injections for Fully Controlled Faults

    Get PDF
    Hardware characterizations of integrated circuits have been evolving rapidly with the advent of more precise, sophisticated and cost-efficient tools. In this paper we describe how the fine tuning of a laser source has been used to characterize, set and reset the state of registers in a 90 nm chip. By adjusting the incident laser beam’s location, it is possible to choose to switch any register value from ‘ 0 ’ to ‘ 1 ’ or vice-versa by targeting the PMOS side or the NMOS side. Plus, we show how to clear a register by selecting a laser beam’s power. With the help of imaging techniques, we are able to explain the underlying phenomenon and provide a direct link between the laser mapping and the physical gate structure. Thus, we correlate the localization of laser fault injections with implementations of the PMOS and NMOS areas in the silicon substrate. This illustrates to what extent laser beams can be used to monitor the bits stored within registers, with adverse consequences in terms of security evaluation of integrated circuits

    Centrosome amplification mediates small extracellular vesicles secretion via lysosome disruption

    Get PDF
    PreprintSummary Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle ( S EV) secretion in pancreatic cancer cells. This is a direct result due of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. Defects in lysosome function promotes multivesicular body fusion with the plasma membrane, thereby enhancing S EV secretion. Furthermore, we find that S EVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3-D cultures. We propose that S EVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy

    On the automatic construction of indistinguishable operations

    Get PDF
    An increasingly important design constraint for software running on ubiquitous computing devices is security, particularly against physical methods such as side-channel attack. One well studied methodology for defending against such attacks is the concept of indistinguishable functions which leak no information about program control flow since all execution paths are computationally identical. However, constructing such functions by hand becomes laborious and error prone as their complexity increases. We investigate techniques for automating this process and find that effective solutions can be constructed with only minor amounts of computational effort.Fundação para a CiĂȘncia e Tecnologia - SFRH/BPD/20528/2004
    • 

    corecore