92 research outputs found

    Up In The Air: How Airlines Can Improve Performance by Engaging Their Employees

    Get PDF
    [Excerpt] In the chapters that follow, we explore the competitive strategies and employment-relations strategies found in the United States (chapter 2) and in a range of other countries (chapter 3), before and after deregulation. In chapter 4 we analyze recent trends in quality, productivity, and costs, as well as employee outcomes. In chapter 5 we look more closely at selected new-entrant airlines and find a wide range of competitive and employment-relations strategies being used in this segment of the industry. In chapter 6, we examine several legacy airlines and identify the distinct strategies they have adopted to respond to competitive pressures from new-entrant airlines. These chapters each focus on selected U.S. airlines and those based in some other countries. In chapter 7, we summarize the strategies of new-entrant and legacy airlines, and offer lessons about how airlines can and do change their strategies over time in their efforts to compete more effectively. We offer recommendations, using our historical and comparative analyses to discuss whether a path forward can be identified that can provide a better balance in stakeholder outcomes. We end on a positive note, arguing that if the parties learn from their experiences and from each other, in the United States and other countries, there is a path that deals with the pressures building up in the airline industry, offering hope for a better balance between investor, employee, customer, and societal interests. Key questions are whether and from where the leadership will come to get the industry moving down this path or whether the main parties might not take such action before there is a perfect storm

    Social Media Content of Idiopathic Pulmonary Fibrosis Groups and Pages on Facebook: Cross-sectional Analysis.

    Get PDF
    BACKGROUND Patients use Facebook as a resource for medical information. We analyzed posts on idiopathic pulmonary fibrosis (IPF)-related Facebook groups and pages for the presence of guideline content, user engagement, and usefulness. OBJECTIVE The objective of this study was to describe and analyze posts from Facebook groups and pages that primarily focus on IPF-related content. METHODS Cross-sectional analysis was performed on a single date, identifying Facebook groups and pages resulting from separately searching "IPF" and "idiopathic pulmonary fibrosis." For inclusion, groups and pages needed to meet either search term and be in English, publicly available, and relevant to IPF. Every 10th post was assessed for general characteristics, source, focus, and user engagement metrics. Posts were analyzed for presence of IPF guideline content, useful scientific information (eg, scientific publications), useful support information (eg, information about support groups), and potentially harmful information. RESULTS Eligibility criteria were met by 12 groups and 27 pages, leading to analysis of 523 posts. Of these, 42% contained guideline content, 24% provided useful support, 20% provided useful scientific information, and 5% contained potentially harmful information. The most common post source was nonmedical users (85%). Posts most frequently focused on IPF-related news (29%). Posts containing any guideline content had fewer likes or comments and a higher likelihood of containing potentially harmful content. Posts containing useful supportive information had more likes, shares, and comments. CONCLUSIONS Facebook contains useful information about IPF, but posts with misinformation and less guideline content have higher user engagement, making them more visible. Identifying ways to help patients with IPF discriminate between useful and harmful information on Facebook and other social media platforms is an important task for health care professionals

    Brain-age prediction:Systematic evaluation of site effects, and sample age range and size

    Get PDF
    Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.</p

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe

    Brain‐age prediction: systematic evaluation of site effects, and sample age range and size

    Get PDF
    Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain‐age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain‐age has highlighted the need for robust and publicly available brain‐age models pre‐trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain‐age model. Here we expand this work to develop, empirically validate, and disseminate a pre‐trained brain‐age model to cover most of the human lifespan. To achieve this, we selected the best‐performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain‐age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre‐trained models were tested for cross‐dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age‐bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain‐age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open‐science, web‐based platform for individualized neuroimaging metrics

    The Network Firm as a Single Real Entity: Beyond the Aggregate of Distinct Legal Entities

    Full text link

    Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article
    • 

    corecore