578 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPreventable adverse events are one of the leading causes of hospitalized patient deaths. Many of these adverse events occur in Intensive Care Units (ICUs) where nurses often work under cognitive, perceptual, and physical overloads. Contributing to these overloads are spatially separated devices which display treatment relevant information such as orders, monitoring information, and equipment status on numerous displays. If essential information of these separate devices was integrated into a single display at the bedside, nurses could potentially reduce their workload and improve their awareness of the patients' treatment plans and physiological status. We conducted a set of three studies for the purpose of designing an efficient and effective ICU display. We observed ICU nurses during their shifts and found that task-relevant information was often presented in the wrong format, unavailable at the point of care or laborious to obtain. Additionally, nurses were sometimes unaware of significant changes in their patient's status and equipment operation. Based on nurses' feedback, we designed an integrated information display that presents all of the information that nurses need at the patient bedside. Nurses selected a display based on the information organization of existing patient monitors, with added medication management and team communication features. The evaluation of paper-based prototypes of both the integrated display and existing ICU displays showed that nurses could answer questions about the patient's status and treatment faster (p<<0.05) and more accurately (p<<0.05) using the integrated display. The number of adverse events in the ICU could potentially be reduced by integrated displays, but to implement them into clinical practice will require significant engineering efforts

    Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor With Angular Air Supply

    Get PDF
    The development of lean-burn combustion systems is of paramount importance for reducing the pollutant emissions of future aero engine generations. By tilting the burners of an annular combustor in circumferential direction relative to the rotational axis of the engine, the potential of increased combustion stability is opened up due to an enhanced exhaust gas recirculation between adjacent flames. The innovative gas turbine combustor concept, called the short helical combustor (SHC), allows the main reaction zone to be operated at low equivalence ratios. To exploit the higher stability of the fuel-lean combustion, a low-swirl lifted flame is implemented in the staggered SHC burner arrangement. The objective is to reach ultralow NOx emissions by complete evaporation and extensive premixing of fuel and air upstream of the lean reaction zone. In this work, a modeling approach is developed to investigate the characteristics of the lifted flame in an enclosed single-burner configuration, using the gaseous fuel methane. It is demonstrated that by using the large eddy simulation method, the shape and liftoff height of the flame are adequately reproduced by means of the finite-rate chemistry approach. For the numerical prediction of the lean lifted flame in the SHC arrangement, the focus is on the interaction of adjacent burners. It is shown that the swirling jet flow is deflected toward the sidewall of the staggered combustor dome, which is attributed to the asymmetrical confinement. Since the stabilization mechanism of the low-swirl flame relies on outer recirculation zones, the upstream transport of hot combustion products back to the flame base is studied by the variation of the combustor confinement ratio. It turns out that increasing the combustor size amplifies the exhaust gas recirculation along the sidewall, and increases the temperature of recirculating burned gases. This study emphasizes the capability of the proposed lean-burn combustor concept for future aero engine applications

    Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor With Angular Air Supply

    Get PDF
    The development of lean-burn combustion systems is of paramount importance for reducing the pollutant emissions of future aero engine generations. By tilting the burners of an annular combustor in circumferential direction relative to the rotational axis of the engine, the potential of increased combustion stability is opened up due to an enhanced exhaust gas recirculation between adjacent flames. The innovative gas turbine combustor concept, called the Short Helical Combustor (SHC), allows the main reaction zone to be operated at low equivalence ratios. To exploit the higher stability of the fuel-lean combustion, a low-swirl lifted flame is implemented in the staggered SHC burner arrangement. The objective is to reach ultra-low NOx emissions by complete evaporation and extensive premixing of fuel and air upstream of the lean reaction zone. In the present work, a modeling approach is developed to investigate the characteristics of the lifted flame in an enclosed single-burner configuration, using the gaseous fuel methane. It is demonstrated that by using the Large Eddy Simulation method, the shape and lift-off height of the flame is adequately reproduced by means of the finite-rate chemistry approach. For the numerical prediction of the lean lifted flame in the SHC arrangement, the focus is on the interaction of adjacent burners. It is shown that the swirling jet flow is deflected towards the sidewall of the staggered combustor dome, which is attributed to the asymmetrical confinement. Since the stabilization mechanism of the low-swirl flame relies on outer recirculation zones, the upstream transport of hot combustion products back to the flame base is studied by the variation of the combustor confinement ratio. It turns out that increasing the combustor size amplifies the exhaust gas recirculation along the sidewall, and increases the temperature of recirculating burned gases. The present study emphasizes the capability of the proposed lean-burn combustor concept for future aero engine applications

    Numerical Investigation of the Low-Swirl Flow in an Aeronautical Combustor With Angular Air Supply

    Get PDF
    Civil air traffic is predicted to further grow in the near future. Hence, the development of aeronautical combustors will face major challenges to meet future stringent environmental regulations. In the present study, an innovative gas turbine combustor with angular air supply called Short Helical Combustor (SHC) is investigated. The main feature of this concept is the helical arrangement of the fuel injectors around the turbine shaft. Aiming at the implementation of a lean-burn concept, a low-swirl lifted flame is adopted. This flame is lifted off and not anchored to the injector which opens the potential of low NOx emissions due to a high degree of premixing within the combustor. In this work, isothermal flow characteristics of such a generic SHC combustor are studied by use of RANS predictions with special emphasis on the interaction of adjacent low-swirl flows. For evaluating the influence of injector parameters on the flow field, a parametric study based on single sector simulations is performed. It is shown that the asymmetrically confined swirling jet flow is strongly deflected towards the sidewall of the staggered SHC dome. The deflection of the flow is associated with an asymmetric pressure field in the vicinity of the burner which is generally known as Coandă effect. As a consequence of the deflected flow, the angular momentum flux at combustor outlet is increased. The interaction of the low-swirl jet and the SHC sidewall is investigated with regards to backflow momentum and residence time in the recirculation zone. It is concluded that by modifying the momentum of the air flow through the injector, the amount of recirculating air flowing back along combustor walls is strongly affected. The present work establishes an understanding of the underlying aerodynamics of the SHC concept which is essential for matching the requirements of lean lifted flames

    Euler–Lagrangian simulation of the fuel spray of a planar prefilming airblast atomizer

    Get PDF
    The pollutant emissions of aircraft engines are strongly affected by the fuel injection into the combustion chamber. Hence, the precise description of the fuel spray is required in order to predict these emissions more reliably. The characteristics of a spray is determined during the atomization process, especially during primary breakup in the vicinity of the atomizer nozzle. Currently, Euler-Lagrangian approaches are used to predict the droplet trajectories in combustor simulations along with reaction and pollutant formation models. To be able to reliably predict pollutant emissions in the future, well-defined starting conditions of the liquid fuel droplets close to the atomizer nozzle are necessary. In the present work, Euler-Lagrangian simulations of a generic airblast atomizer are presented. The starting conditions of the droplets are varied in the simulations by means of a primary breakup model, which takes into account the local gas velocity when predicting the droplet diameter. The objective of this work is to determine the optimal parameters of the probability density functions for the starting position and the starting velocity of the droplets. Spray properties observed in the simulations are used to qualitatively evaluate the major effects of the distribution parameters on the spray and the suitability of the primary breakup model being applied. Hence, the spatial distribution of an experimental spray can be reproduced using a statistical model for the droplet starting conditions

    A Combined Score of Circulating miRNAs Allows Outcome Prediction in Critically Ill Patients

    Get PDF
    Background and aims: Identification of patients with increased risk of mortality represents an important prerequisite for an adapted adequate and individualized treatment of critically ill patients. Circulating micro-RNA (miRNA) levels have been suggested as potential biomarkers at the intensive care unit (ICU), but none of the investigated miRNAs displayed a sufficient sensitivity or specificity to be routinely employed as a single marker in clinical practice. Methods and results: We recently described alterations in serum levels of 7 miRNAs (miR-122, miR-133a, miR-143, miR-150, miR-155, miR-192, and miR-223) in critically ill patients at a medical ICU. In this study, we re-analyzed these previously published data and performed a combined analysis of these markers to unravel their potential as a prognostic scoring system in the context of critical illness. Based on the Youden’s index method, cut-off values were systematically defined for dysregulated miRNAs, and a “miRNA survival score” was calculated. Patients with high scores displayed a dramatically impaired prognosis compared to patients with low values. Additionally, the predictive power of our score could be further increased when the patient’s age was additionally incorporated into this score. Conclusions: We describe the first miRNA-based biomarker score for prediction of medical patients’ outcome during and after ICU treatment. Adding the patients’ age into this score was associated with a further increase in its predictive power. Further studies are needed to validate the clinical utility of this score in risk-stratifying critically ill patients

    Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T cell-mediated immunity in elderly people is compromised in ways reflected in the composition of the peripheral T cell pool. The advent of polychromatic flow cytometry has made analysis of cell subsets feasible in unprecedented detail.</p> <p>Results</p> <p>Here we document shifts in subset distribution within naïve (N), central memory (CM) and effector memory (EM) cells defined by CD45RA and CCR7 expression in the elderly, additionally using the costimulatory receptors CD27 and CD28, as well as the coinhibitory receptors CD57 and KLRG-1, to further dissect these. Although differences between young and old were more marked in CD8 than in CD4 cells, a similar overall pattern prevailed in both. Thus, the use of all these markers together, and inclusion of assays of proliferation and cytokine secretion, may enable the construction of a differentiation scheme applicable to CD4 as well as CD8 cells, with the model (based on Romero et al.) suggesting the progression N→CM→EM1→EM2→pE1→pE2→EM4→EM3→E end-stage non-proliferative effector cells.</p> <p>Conclusion</p> <p>Overall, the results suggest that both differences in subset distribution and differences between subsets are responsible for age-related changes in CD8 cells but that differences within rather than between subsets are more prominent for CD4 cells.</p

    In situ Grignard Metalation Method, Part II: Scope of the One‐Pot Synthesis of Organocalcium Compounds

    Get PDF
    The in situ Grignard Metalation Method ( i GMM) is a straightforward one‐pot strategy to synthesize alkaline‐earth metal amides in multi‐gram scale with high yields via addition of bromoethane to an ethereal suspension of a primary or secondary amine and magnesium (Part I) or calcium (Part II). This method is highly advantageous because no activation of calcium is required prior to the reaction. Contrary to the magnesium‐based i GMM, there are some limitations, the most conspicuous one is the large influence of steric factors. The preparation of Ca(hmds) 2 succeeds smoothly within a few hours with excellent yields opening the opportunity to prepare large amounts of this reagent. Side reactions and transfer of the i GMM to substituted anilines and N‐heterocycles as well as other H‐acidic substrates such as cyclopentadienes are studied. Bulky amidines cannot be converted directly to calcium amidinates via the i GMM but stoichiometric calciation with Ca(hmds) 2 enables their preparation
    • 

    corecore