27,222 research outputs found

    Charm production in deep inelastic and diffractive scattering

    Get PDF
    We consider the production of charm by real and virtual photons. Special attention is paid to diffractive charm production, which provides information on the gluonic content of the Pomeron. Our calculations are based on the gluon distributions of the CKMT-model, which is shown to lead to agreement with the data on open charm production in deep inelastic scattering. We compare predictions for diffractive charm production of different models for the distribution of gluons in the Pomeron. Experiments at HERA should be able to discriminate between them. Predictions for beauty production in diffractive and non-diffractive interactions of photons are also given.Comment: 14 pages REVTEX and 24 figures include

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    In Vivo Evolution of Butane Oxidation by Terminal Alkane Hydroxylases AlkB and CYP153A6

    Get PDF
    Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47{Delta}B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts

    mts(MN9), a cpc-1 allele involved in a translocation

    Get PDF
    Among several amino acid analogue sensitive mutants, D.E.A. Catcheside selected mts(MN1) and mts(MN9) via their 5-methyltryptophan sensitive phenotype (1966, Ph.D thesis, University of Birmingham)

    Are the cpc-1 and mts-1 mutations of Neurospora allelic?

    Get PDF
    Are the cpc-1 and mts-1 mutations of Neurospora allelic

    Phonon-affected steady-state transport through molecular quantum dots

    Full text link
    We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding

    The chemical equilibration volume: measuring the degree of thermalization

    Full text link
    We address the issue of the degree of equilibrium achieved in a high energy heavy-ion collision. Specifically, we explore the consequences of incomplete strangeness chemical equilibrium. This is achieved over a volume V of the order of the strangeness correlation length and is assumed to be smaller than the freeze-out volume. Probability distributions of strange hadrons emanating from the system are computed for varying sizes of V and simple experimental observables based on these are proposed. Measurements of such observables may be used to estimate V and as a result the degree of strangeness chemical equilibration achieved. This sets a lower bound on the degree of kinetic equilibrium. We also point out that a determination of two-body correlations or second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex

    Renormalization group improved black hole space-time in large extra dimensions

    Full text link
    By taking into account a running of the gravitational coupling constant with an ultra violet fixed point, an improvement of classical black hole space-times in extra dimensions is studied. It is found that the thermodynamic properties in this framework allow for an effective description of the black hole evaporation process. Phenomenological consequences of this approach are discussed and the LHC discovery potential is estimated.Comment: 13 pages, 6 figure

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0
    • …
    corecore