4 research outputs found

    Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: The role of genetic modification and preconditioning strategies

    Get PDF
    Pulmonary fibrosis (PF) is the end stage of severe lung diseases, in which the lung parenchyma is replaced by fibrous scar tissue. The result is a remarkable reduction in pulmonary compliance, which may lead to respiratory failure and even death. Idiopathic pulmonary fibrosis (IPF) is the most prevalent form of PF, with no reasonable etiology. However, some factors are believed to be behind the etiology of PF, including prolonged administration of several medications (e.g., bleomycin and amiodarone), environmental contaminant exposure (e.g., gases, asbestos, and silica), and certain systemic diseases (e.g., systemic lupus erythematosus). Despite significant developments in the diagnostic approach to PF in the last few years, efforts to find more effective treatments remain challenging. With their immunomodulatory, anti-inflammatory, and anti-fibrotic properties, stem cells may provide a promising approach for treating a broad spectrum of fibrotic conditions. However, they may lose their biological functions after long-term in vitro culture or exposure to harsh in vivo situations. To overcome these limitations, numerous modification techniques, such as genetic modification, preconditioning, and optimization of cultivation methods for stem cell therapy, have been adopted. Herein, we summarize the previous investigations that have been designed to assess the effects of stem cell preconditioning or genetic modification on the regenerative capacity of stem cells in PF

    Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes

    No full text
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition

    Melatonin potentials against viral infections including COVID-19: Current evidence and new findings

    No full text
    corecore