275 research outputs found

    A 1H-NMR-based metabolomic analysis of propolis from Santa Catarina state

    Get PDF
    16th IUFoST World Congress of Food Science and Technology: Addressing Global Food Security and Wellness through Food Science and TechnologyPropolis is a resinous biomass produced by honeybees from exudates of local flora. It has been used since ancient times in folk medicine and in recent years has been added to foods and beverages to improve health and prevent diseases. The chemical composition of propolis is highly variable and depends on the climate, season, specie of bee, and mainly the local flora visited by bees to collect resin. In order to identify groups of chemical similarity among samples (n=20 autumn, n=16 winter, n=19 spring, n=17 summer) of propolis produced in Santa Catarina (SC) state (southern Brazil - 2010), lyophilized ethanolic extracts (200 mg/ml, EtOH 70%, v/v) were solubilized in MeOD3 (700l) and analyzed by NMR spectroscopy. One-dimensional 1HNMR spectra were acquired at a magnetic field strength of 500,13/125,03 MHz using a Varian Inova 500 MHz equipment and standard conditions of data acquisition. The 1H-NMR peak list data set was processed under MetaboAnalyst 2.0. suite, computing the resonances at 0.80- 12ppm spectral window. Principal Components Analysis (PCA) score scatter plots (PC1 88.2% x PC2 2.2%) clearly demonstrated samples discriminated mainly according to the season of production. These results suggest that not only geographical origin is important for the classification of propolis, but the seasonal effects as well. Since seasons directly influence the flora available from where bees collect resin, the propolis chemical profile can be significantly modified over the seasons even from a same geographical origin.info:eu-repo/semantics/publishedVersio

    Relationship between spatial proximity and travel-to-work distance : the effect of the compact city

    Get PDF
    In this paper, an assessment is made of the relationship between selected aspects of spatial proximity (density, diversity, minimum commuting distance, jobs-housing balance and job accessibility) and reported commuting distances in Flanders (Belgium). Results show that correlations may depend on the considered trip end. For example, a high residential density, a high degree of spatial diversity and a high level of job accessibility are all associated with a short commute by residents, while a high job density is associated with a long commute by employees. A jobs-housing balance close to one is associated with a short commute, both by residents and by employees. In general, it appears that the alleged sustainability benefits of the compact city model are still valid in a context of continuously expanding commuting trip lengths

    Origin and Evolution of GALA-LRR, a New Member of the CC-LRR Subfamily: From Plants to Bacteria?

    Get PDF
    The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum

    Microscopic Treatment of Binary Interactions in the Non-Equilibrium Dynamics of Partially Bose-condensed Trapped Gases

    Full text link
    In this paper we use microscopic arguments to derive a nonlinear Schr\"{o}dinger equation for trapped Bose-condensed gases. This is made possible by considering the equations of motion of various anomalous averages. The resulting equation explicitly includes the effect of repeated binary interactions (in particular ladders) between the atoms. Moreover, under the conditions that dressing of the intermediate states of a collision can be ignored, this equation is shown to reduce to the conventional Gross-Pitaevskii equation in the pseudopotential limit. Extending the treatment, we show first how the occupation of excited (bare particle) states affects the collisions, and thus obtain the many-body T-matrix approximation in a trap. In addition, we discuss how the bare particle many-body T-matrix gets dressed by mean fields due to condensed and excited atoms. We conclude that the most commonly used version of the Gross-Pitaevskii equation can only be put on a microscopic basis for a restrictive range of conditions. For partial condensation, we need to take account of interactions between condensed and excited atoms, which, in a consistent formulation, should also be expressed in terms of the many-body T-matrix. This can be achieved by considering fluctuations around the condensate mean field beyond those included in the conventional finite temperature mean field, i.e. Hartree-Fock-Bogoliubov (HFB), theory.Comment: Resolved some problems with printing of figure

    Molecular Mimicry by an F-Box Effector of Legionella pneumophila Hijacks a Conserved Polyubiquitination Machinery within Macrophages and Protozoa

    Get PDF
    The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts

    Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library.</p> <p>Results</p> <p>Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1). Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids.</p> <p>Conclusion</p> <p>We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor. TLRR is homologous to a class of regulatory subunits for PP1, a central phosphatase in the reversible phosphorylation of proteins that is key to modulation of many intracellular processes. TLRR may serve to target this important signaling molecule near the nucleus of developing spermatids in order to control the cellular rearrangements of spermiogenesis.</p

    Unique Properties of Eukaryote-Type Actin and Profilin Horizontally Transferred to Cyanobacteria

    Get PDF
    A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity

    Decoherent Histories Approach to the Arrival Time Problem

    Get PDF
    We use the decoherent histories approach to quantum theory to compute the probability of a non-relativistic particle crossing x=0x=0 during an interval of time. For a system consisting of a single non-relativistic particle, histories coarse-grained according to whether or not they pass through spacetime regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by considering restricted density operator propagators of the quantum Brownian motion model. We also show how to achieve decoherence by replicating the system NN times and then projecting onto the number density of particles that cross during a given time interval, and this gives an alternative expression for the crossing probability. The latter approach shows that the relative frequency for histories is approximately decoherent for sufficiently large NN, a result related to the Finkelstein-Graham-Hartle theorem.Comment: 42 pages, plain Te
    • …
    corecore