19,740 research outputs found
Simulations of deposition growth models in various dimensions. Are overhangs important?
We present simulation results of deposition growth of surfaces in 2, 3 and 4
dimensions for ballistic deposition where overhangs are present, and for
restricted solid on solid deposition where there are no overhangs. The values
of the scaling exponents for the two models are found to be different,
suggesting that they belong to different universality classes.Comment: figures available from author
First axion dark matter search with toroidal geometry
We firstly report an axion haloscope search with toroidal geometry. In this
pioneering search, we exclude the axion-photon coupling
down to about GeV over the axion mass range from 24.7
to 29.1 eV at a 95\% confidence level. The prospects for axion dark matter
searches with larger scale toroidal geometry are also considered.Comment: 5 pages, 5 figures, 1 table and to appear in PRD-R
Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection
The Ultraviolet Coronagraph Spectrometer (UVCS) observed Doppler shifted
material of a partial Halo Coronal Mass Ejection (CME) on December 13 2001. The
observed ratio of [O V]/O V] is a reliable density diagnostic important for
assessing the state of the plasma. Earlier UVCS observations of CMEs found
evidence that the ejected plasma is heated long after the eruption. We have
investigated the heating rates, which represent a significant fraction of the
CME energy budget. The parameterized heating and radiative and adiabatic
cooling have been used to evaluate the temperature evolution of the CME
material with a time dependent ionization state model. The functional form of a
flux rope model for interplanetary magnetic clouds was also used to
parameterize the heating. We find that continuous heating is required to match
the UVCS observations. To match the O VI-bright knots, a higher heating rate is
required such that the heating energy is greater than the kinetic energy. The
temperatures for the knots bright in Ly and C III emission indicate
that smaller heating rates are required for those regions. In the context of
the flux rope model, about 75% of the magnetic energy must go into heat in
order to match the O VI observations. We derive tighter constraints on the
heating than earlier analyses, and we show that thermal conduction with the
Spitzer conductivity is not sufficient to account for the heating at large
heights.Comment: 40 pages, 16 figures, accepted for publication in ApJ For associated
mpeg file, please see https://www.cora.nwra.com/~jylee/mpg/f5.mp
Recommended from our members
Springtime photochemical ozone production observed in the upper troposphere over east Asia
Mechanisms that influence the formation of high-ozone regions in the boundary layer downwind of the Asian continent in winter and spring
The seasonal variation of ozone (O3) in the boundary layer (BL) over the western Pacific is investigated using a chemistry-transport model. The model results for January and April-May 2002 were evaluated by comparison with PEACE aircraft observations. In January, strong northwesterlies efficiently transported NOx from the continent, leading to an O3 increase of approximately 5-10 ppbv over a distance of about 3000 km. In April, southwesterlies dominated due to anticyclone development over the western Pacific. Along this flow, O3 continued to be produced by NO x emitted from East Asia. This resulted in the formation of a high-O3 (> 50 ppbv) region extending along the coastal areas of East Asia. This seasonal change in O3 was driven in part by a change in the net O3 production rate due to increases in solar UV and H 2O. Its exact response depended on the NOx values in the BL. The net O3 production rate increased between winter and spring over the Asian continent and decreased over the remote western Pacific. Model simulations show that about 25% of the total O3 (of 10-20 ppbv) increase over the coastal region of Northeast Asia was due to local production from NOx emissions from China, and the rest was due to changes in background levels as well as emissions from Korea, Japan, and east Siberia. Uplift of BL air over Asia, horizontal transport in the free troposphere, and subsidence were the principal mechanisms of transporting Asian O3 to the central and eastern North Pacific Copyright 2008 by the American Geophysical Union
Recommended from our members
Photochemistry of ozone over the western Pacific from winter to spring
Aircraft measurements of ozone (O3) and its precursors, including NO, CO, H2O, and nonmethane hydrocarbons (NMHCs), were made over the western Pacific in the 20° - 45°N latitude range in January and April-May 2002 during the Pacific Exploration of Asian Continental Emission (PEACE)-A and B campaigns. These measurements have provided data sets that, in combination with Transport and Chemical Evolution over the Pacific (TRACE-P) data taken in March 2001, enable studies of O3 photochemistry from winter to late spring. A photochemical box model is used to calculate ozone formation (F(O3)) and destruction (D(O3)) rates constrained by the observed species concentrations. The values of F(O3) and D(O3) are controlled directly by NO, J(O1D) (O3 photolysis frequency), H2O, OH, and HO2. Changes in HO2 concentration cause corresponding changes in both F(O3) and D(O3) leading to their coupling. Concentrations of these species, which are strongly influenced by photochemistry and transport from the Asian continent, underwent large seasonal variations. In the boundary layer (0-3 km), NO was much higher in January than in April-May, because of stronger winds, lower convective activities, and lower oxidation rates by OH in winter. The net O3 formation rate, given by P(O3) = F(O3) - D(O3), was largely positive in the boundary layer at 30°-45°N (1.5-4 ppbv d-1) in January, mainly because of high NO and low H2O values. Net O3 formation continued from January to the end of March, demonstrating that the western Pacific is an important O3 source region during this season. Net O3 formation nearly ceased by late April/May because of the decrease in NO and the increase in H2O. In the latitude range of 20°-30°N, P(O3) in the boundary layer was positive in January and turned negative by March. The earlier transition was mainly due to lower NO and higher H2O concentrations, combined with weaker transport and higher temperatures than those at 30°-45°N. The upper troposphere (6-12 km) has been shown to be a region of net O3 formation throughout most of the year because of high NO and low H2O. The present study illustrates that a decrease in the net O3 formation rate at 20°-45°N latitude from winter to late spring is explained systematically by the increases in J(O1D), H2O, OH, and HO2 (primarily due to increases in temperature and solar radiation) and the decrease in NO (primarily due to decrease in transport from the Asian continent). Differences in the seasonal variation of O3 photochemistry observed over the North American continent are interpreted in terms of the differences in factors controlling O3 formation and destruction. Copyright 2004 by the American Geophysical Union
- …