59 research outputs found

    The lateral habenula is critically involved in histamine-induced itch sensation

    Get PDF
    Abstract Lateral habenula (LHb) is a brain region acting as a hub mediating aversive response against noxious, stressful stimuli. Growing evidences indicated that LHb modulates aminergic activities to induce avoidance behavior against nociceptive stimuli. Given overlapped neural circuitry transmitting pain and itch information, it is likely that LHb have a role in processing itch information. Here, we examined whether LHb is involved in itchy response induced by histamine. We found that histamine injection enhances Fos (+) cells in posterior portion within parvocellular and central subnuclei of the medial division (LHbM) of the LHb. Moreover, chemogenetic suppression of LHbM reduced scratching behavior induced by histamine injection. These results suggest that LHb is required for processing itch information to induce histaminergic itchy response

    Null effect of antidepressants on the astrocytes-mediated proliferation of hippocampal progenitor cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that antidepressants increase neurogenesis in the dentate gyrus of the hippocampus. The increase of neurogenesis might contribute to the behavioral effects of antidepressants. However, the mechanism by which antidepressants increase hippocampal neurogenesis is largely unknown. It has been recently reported that astroglia induce the neurogenesis of the hippocampal neural progenitor cells (NPCs). Therefore, we hypothesized that antidepressants may act on astrocytes, and this in turn induces neurogenesis of NPCs.</p> <p>Results</p> <p>To examine this hypothesis, we used two co-culture systems, i.e., a contact-independent Banker culture and a contact-dependent overlay co-culture. In both of these systems, in comparison with naĆÆve astrocytes, antidepressant-treated astrocytes did not further increase the proliferation of NPCs.</p> <p>Conclusion</p> <p>These results suggest that astrocytes increase the proliferation of hippocampal NPCs, however, this may not be directly involved in the antidepressant-induced proliferation of NPCs.</p

    Loosely synchronized activation of anterior cingulate cortical neurons for scratching response during histamine-induced itch

    Get PDF
    Itch is a distinctive sensation that causes a specific affection and scratching reaction. The anterior cingulate cortex (ACC) has been linked to itch sensation in numerous studies; however, its precise function in processing pruritic inputs remains unknown. Distinguishing the precise role of the ACC in itch sensation can be challenging because of its capacity to conduct heterologous neurophysiological activities. Here, we used in vivo calcium imaging to examine how ACC neurons in free-moving mice react to pruritogenic histamine. In particular, we focused on how the activity of the ACC neurons varied before and after the scratching response. We discovered that although the change in neuronal activity was not synchronized with the scratching reaction, the overall activity of itch-responsive neurons promptly decreased after the scratching response. These findings suggest that the ACC does not directly elicit the feeling of itchiness.This work was supported by grants from the National Research Foundation (NRF) of Korea funded by the Korean government (MSIP) (NRF-2012R1A3A1050385 (B-KK), 2021R1A2C1013092 (H-GK), and 2022R1F1A1071248 (J-HL

    Proteomic analysis of synaptic protein turnover in the anterior cingulate cortex after nerve injury

    Get PDF
    Synaptic proteins play an important role for the regulation of synaptic plasticity. Numerous studies have identified and revealed individual synaptic protein functions using protein overexpression or deletion. In neuropathic pain nociceptive stimuli conveyed from the periphery repetitively stimulate neurons in the central nerve system, brain and spinal cord. Neuronal activities change the turnover (synthesis and degradation) rate of synaptic proteins. Thus, the analysis of synaptic protein turnover rather than just expression level change is critical for studying the role of synaptic proteins in synaptic plasticity. Here, we analyzed synaptosomal proteome in the anterior cingulate cortex (ACC) to identify protein turnover rate changes caused by peripheral nerve injury. Whereas PKCĪ³ levels were not altered, we found that the proteins turnover rate decreased after peripheral nerve injury. Our results suggest that postsynaptic PKCĪ³ synthesized by neuronal activities in the ACC is translocated to the postsynaptic membrane with an extended half-life.This work was supported by two National Research Foundation (NRF) of Korea grants funded by the Korean government (MSIP) [NRF2012R1A3A1050385 to BKK and 2018R1C1B6008530 to HGK] and the Max Planck Society to CWT and DIP

    Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    Get PDF
    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory

    PKA-activated ApAFā€“ApC/EBP heterodimer is a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilitation

    Get PDF
    Long-term memory requires transcriptional regulation by a combination of positive and negative transcription factors. Aplysia activating factor (ApAF) is known to be a positive transcription factor that forms heterodimers with ApC/EBP and ApCREB2. How these heterodimers are regulated and how they participate in the consolidation of long-term facilitation (LTF) has not, however, been characterized. We found that the functional activation of ApAF required phosphorylation of ApAF by PKA on Ser-266. In addition, ApAF lowered the threshold of LTF by forming a heterodimer with ApCREB2. Moreover, once activated by PKA, the ApAFā€“ApC/EBP heterodimer transactivates enhancer response elementā€“containing genes and can induce LTF in the absence of CRE- and CREB-mediated gene expression. Collectively, these results suggest that PKA-activated ApAFā€“ApC/EBP heterodimer is a core downstream effector of ApCREB in the consolidation of LTF

    Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of <it>Citrus aurantium </it>flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells.</p> <p>Methods</p> <p>During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 Ī¼g/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation.</p> <p>Results</p> <p>The insulin-induced expression of C/EBPĪ² and PPARĪ³ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPĪ±, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3Ī² (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes.</p> <p>Conclusions</p> <p>In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPĪ² and subsequently inhibits the activation of PPARĪ³ and C/EBPĪ±. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3Ī² phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.</p

    House of Commons Library: Briefing paper: Number 07147, 13 April 2018: School places in England: applications, allocations and appeals

    Get PDF
    Background: We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. Methods: We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of Īŗ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. Results: GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a Īŗ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. Conclusions: Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated Īŗ-opioid receptor and downregulation of substance P-mediated NK1 R

    Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain

    Get PDF
    SummaryChronic pain can lead to anxiety and anxiety canĀ enhance the sensation of pain.怀Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors. Pre-LTP also involves adenylyl cyclase and protein kinase A and is expressed via a mechanism involving hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Interestingly, chronic pain and anxiety both result in selective occlusion of pre-LTP. Significantly, microinjection of the HCN blocker ZD7288 into the ACC inĀ vivo produces both anxiolytic and analgesic effects. Our results provide a mechanism by which two forms of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain
    • ā€¦
    corecore