2,843 research outputs found

    Monitoring of bed material in a biomass fluidized bed boiler using an electronic tongue

    Get PDF
    The thermal conversion of biomass fuel mixes in fluidized beds can cause agglomeration. To counteract agglomeration, bed material is gradually exchanged with virgin bed material, and this results in increased disposal of used bed material. Furthermore, the bed material exchange represents a costly option, as it involves a cost for virgin bed material, for landfill, and for unplanned downtime of the plant. This paper presents a novel method for the evaluation of bed material quality: the electronic tongue (ET). Evaluation of bed material quality can contribute toward decreasing the cost of unnecessary exchanges of bed material. The proposed method was tested on bed material sampled on an almost daily basis from a commercial fluidized bed boiler during several months of operation. A two-electrode ET was used for the evaluation of the bed material quality. The analysis relied on pulsed voltammetry measurements and multivariate data analysis with Principal Component Analysis (PCA). The results suggest that it is possible to follow bed material changes and that the ET, after further development, may be used to optimize the material flows connected to the bed material. Further research is being conducted to optimize the ET\u27s performance and its application in monitoring bed material

    Влияние изменения тиреоидного статуса на активность центральной стресс-лимитирующей системы

    Get PDF
    ТИРЕОИДНЫЕ ГОРМОНЫЙОДСОДЕРЖАЩИЕ ТИРЕОИДНЫЕ ГОРМОНЫСТРЕСССТРЕСС-ЛИМИТИРУЮЩИЕ СИСТЕМЫТИРОКСИНГИПЕРТИРЕОЗГИПОТИРЕОЗЭКСПЕРИМЕНТЫ НА ЖИВОТНЫХБИОМЕДИЦИНСКИЕ ИССЛЕДОВАНИЯКРЫС

    The CCFM Monte Carlo generator CASCADE 2.2.0

    Get PDF
    CASCADE is a full hadron level Monte Carlo event generator for ep, \gamma p and p\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events

    Hyperbolic planforms in relation to visual edges and textures perception

    Get PDF
    We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g. optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in [1, 2] to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table

    Study of Z boson production in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    © 2016 The Author.The production of Z bosons in pPb collisions at sNN=5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions
    corecore