7 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Ara h 7 isoforms share many linear epitopes : Are 3D epitopes crucial to elucidate divergent abilities?

    No full text
    Background: The peanut allergens Ara h 2, h 6, and h 7 are potent allergens and can trigger severe reactions. Ara h 7 consists of three isoforms differing in their ability to induce basophil degranulation, whereas the ability of Ara h 7.0201 is comparable to Ara h 2 and 6 as shown in previous literature. Objective: To identify linear epitopes of Ara h 7.0101, Ara h 7.0201 and Ara h 7.0301 recognized by IgE and IgG4 from patients sensitized to Ara h 7 and to investigate their potential to elucidate divergent abilities of the Ara h 7 isoforms in inducing basophil activation. Methods: Linear epitopes recognized by IgE and IgG4 were mapped by peptide microarray analysis containing 15-mer peptides of Ara h 2.0201, 6, 7.0101, 7.0201 and 7.0301 and 39 peanut allergic patients sensitized to Ara h 7 (discovery). For validation, 20-mer peptides containing the minimal epitope and surrounding amino acids were incubated with 25 sensitized patients and 10 controls (validation). Results: Three out of 14 linear epitopes were unique for each isoform (Ara h 7.0101: aa 97-109; Ara h 7.0201: aa 122-133; Ara h 7.0301: aa 65-74) but scarcely recognized by IgE. The main linear IgE epitope (aa 51-57) located in the long flexible loop of all Ara h 7 isoforms was bound by antibodies from 31% of the patients (discovery and validation cohort). Regarding IgG4, 55% of the patients recognized an epitope present on all isoforms (aa 55-65), whereas epitope aa 129-137, only present on Ara h 7.0101/0.0301, was recognized by 38% of the patients. Recognition was highly individual, although 20% of the patients recognized any linear epitope neither by IgE nor by IgG4 despite a low mean z-score of ≥ 1.7. Remarkably, only 50% of the patients recognized one or more epitopes by IgE. Conclusion & Clinical Relevance: Ara h 7 isoforms share many linear epitopes being easily accessible for antibody binding. Unique epitopes, essential to elucidate divergent potencies, were scarcely recognized, suggesting a crucial involvement of conformational epitopes

    Sesame oleosins are minor allergens

    No full text
    Background: In daily practice, one-third of sesame allergic patients, confirmed by clinical history or food challenge, do not show any detectable specific IgE using current diagnostics. Currently used sesame extracts are water-based and therefore lacking hydrophobic proteins like oleosins. Oleosins, the stabilizer of lipid droplets in plants, are described as allergens in sesame, peanut and hazelnut. In this study, we examine the role of oleosins in sesame allergy and their potential cross-reactivity between sesame and (pea)nuts. Methods: Specific IgE and IgG sensitisation to native and heterologously expressed sesame components and oleosins from other nuts, free of seed storage proteins, was assessed by line blot and sera from 17 sesame allergic patients without detectable specific IgE sensitisation to sesame, and compared to 18 sesame allergic and 13 tolerant patients with specific IgE sensitisation to sesame. Results: Sesame allergic patients without sensitisation showed no specific IgE to the tested sesame oleosins or components. Low levels of specific IgE to sesame oleosins were detected in 17% of sesame allergic and 15% of tolerant patients with sIgE sensitisation. Oleosins were recognised by serum IgG from multiple patients confirming immune reactivity and excluding technical issues leading to lack of specific IgE-binding to oleosins. Conclusion: Sesame oleosins are minor allergens and appear to have no additonal value in diagnosing sesame allergy in adults based on sIgE and sIgG detection. There is a high need for additional diagnostic tools in those patients to minimize the number of required food challenges

    Sesame oleosins are minor allergens

    No full text
    Background: In daily practice, one-third of sesame allergic patients, confirmed by clinical history or food challenge, do not show any detectable specific IgE using current diagnostics. Currently used sesame extracts are water-based and therefore lacking hydrophobic proteins like oleosins. Oleosins, the stabilizer of lipid droplets in plants, are described as allergens in sesame, peanut and hazelnut. In this study, we examine the role of oleosins in sesame allergy and their potential cross-reactivity between sesame and (pea)nuts. Methods: Specific IgE and IgG sensitisation to native and heterologously expressed sesame components and oleosins from other nuts, free of seed storage proteins, was assessed by line blot and sera from 17 sesame allergic patients without detectable specific IgE sensitisation to sesame, and compared to 18 sesame allergic and 13 tolerant patients with specific IgE sensitisation to sesame. Results: Sesame allergic patients without sensitisation showed no specific IgE to the tested sesame oleosins or components. Low levels of specific IgE to sesame oleosins were detected in 17% of sesame allergic and 15% of tolerant patients with sIgE sensitisation. Oleosins were recognised by serum IgG from multiple patients confirming immune reactivity and excluding technical issues leading to lack of specific IgE-binding to oleosins. Conclusion: Sesame oleosins are minor allergens and appear to have no additonal value in diagnosing sesame allergy in adults based on sIgE and sIgG detection. There is a high need for additional diagnostic tools in those patients to minimize the number of required food challenges

    Health sector costs of self-reported food allergy in Europe:a patient-based cost of illness study

    Get PDF
    <p>Introduction: Food allergy is a recognized health problem, but little has been reported on its cost for health services. The EuroPrevall project was a European study investigating the patterns, prevalence and socio-economic cost of food allergy. Aims: To investigate the health service cost for food-allergic Europeans and the relationship between severity and cost of illness. Methods: Participants recruited through EuroPrevall studies in a case-control study in four countries, and cases only in five countries, completed a validated economics questionnaire. Individuals with possible food allergy were identified by clinical history, and those with food-specific immuno-globulin E were defined as having probable allergy. Data on resource use were used to estimate total health care costs of illness. Mean costs were compared in the case-control cohorts. Regression analysis was conducted on cases from all 9 countries to assess impact of country, severity and age group. Results: Food-allergic individuals had higher health care costs than controls. The mean annual cost of health care was international dollars (I)2016forfoodallergicadultsandI)2016 for food-allergic adults and I1089 for controls, a difference of I927(95927 (95% confidence interval I324-I$1530). A similar result was found for adults in each country, and for children, and was not sensitive to baseline demographic differences. Cost was significantly related to severity of illness in cases in nine countries. Conclusions: Food allergy is associated with higher health care costs. Severity of allergic symptoms is a key explanatory factor..</p>

    EAACI Molecular Allergology User's Guide 2.0

    Get PDF
    Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.Peer reviewe
    corecore