41 research outputs found

    Intracranial bleeding in patients with traumatic brain injury: A prognostic study

    Get PDF
    BACKGROUND: Intracranial bleeding (IB) is a common and serious consequence of traumatic brain injury (TBI). IB can be classified according to the location into: epidural haemorrhage (EDH) subdural haemorrhage (SDH) intraparenchymal haemorrhage (IPH) and subarachnoid haemorrhage (SAH). Studies involving repeated CT scanning of TBI patients have found that IB can develop or expand in the 48 hours after injury. If IB enlarges after hospital admission and larger bleeds have a worse prognosis, this would provide a therapeutic rationale for treatments to prevent increase in the extent of bleeding. We analysed data from the Trauma Audit & Research Network (TARN), a large European trauma registry, to evaluate the association between the size of IB and mortality in patients with TBI. METHODS: We analysed 13,962 patients presenting to TARN participating hospitals between 2001 and 2008 with a Glasgow Coma Score (GCS) less than 15 at presentation or any head injury with Abbreviated Injury Scale (AIS) severity code 3 and above. The extent of intracranial bleeding was determined by the AIS code. Potential confounders were age, presenting Glasgow Coma Score, mechanism of injury, presence and nature of other brain injuries, and presence of extra-cranial injuries. The outcomes were in-hospital mortality and haematoma evacuation. We conducted a multivariable logistic regression analysis to evaluate the independent effect of large and small size of IB, in comparison with no bleeding, on patient outcomes. We also conducted a multivariable logistic regression analysis to assess the independent effect on mortality of large IB in comparison with small IB. RESULTS: Almost 46% of patients had at some type of IB. Subdural haemorrhages were present in 30% of the patients, with epidural and intraparenchymal present in approximately 22% each. After adjusting for potential confounders, we found that large IB, wherever located, was associated with increased mortality in comparison with no bleeding. We also found that large IB was associated with an increased risk of mortality in comparison with small IB. The odds ratio for mortality for large SDH, IPH and EDH, in comparison with small bleeds, were: 3.41 (95% CI: 2.684.33), 3.47 (95% CI: 2.265.33) and 2.86 (95% CI: 1.864.38) respectively. CONCLUSION: Large EDH, SDH and IPH are associated with a substantially higher probability of hospital mortality in comparison with small IB. However, the limitations of our data, such as the large proportion of missing data and lack of data on other confounding factors, such as localization of the bleeding, make the results of this report only explanatory. Future studies should also evaluate the effect of IB size on functional outcomes

    Chick Embryo Partial Ischemia Model: A New Approach to Study Ischemia Ex Vivo

    Get PDF
    Background: Ischemia is a pathophysiological condition due to blockade in blood supply to a specific tissue thus damaging the physiological activity of the tissue. Different in vivo models are presently available to study ischemia in heart and other tissues. However, no ex vivo ischemia model has been available to date for routine ischemia research and for faster screening of anti-ischemia drugs. In the present study, we took the opportunity to develop an ex vivo model of partial ischemia using the vascular bed of 4th day incubated chick embryo. Methodology/Principal Findings: Ischemia was created in chick embryo by ligating the right vitelline artery using sterile surgical suture. Hypoxia inducible factor- 1 alpha (HIF-1a), creatine phospho kinase-MB and reactive oxygen species in animal tissues and cells were measured to confirm ischemia in chick embryo. Additionally, ranolazine, N-acetyl cysteine and trimetazidine were administered as an anti-ischemic drug to validate the present model. Results from the present study depicted that blocking blood flow elevates HIF-1a, lipid peroxidation, peroxynitrite level in ischemic vessels while ranolazine administration partially attenuates ischemia driven HIF-1a expression. Endothelial cell incubated on ischemic blood vessels elucidated a higher level of HIF-1a expression with time while ranolazine treatment reduced HIF-1a in ischemic cells. Incubation of caprine heart strip on chick embryo ischemia model depicted an elevated creatine phospho kinase-MB activity under ischemic condition while histology of the treated heart sections evoked edema and disruption of myofibril structures. Conclusions/Significance: The present study concluded that chick embryo partial ischemia model can be used as a novel ex vivo model of ischemia. Therefore, the present model can be used parallel with the known in vivo ischemia models in understanding the mechanistic insight of ischemia development and in evaluating the activity of anti-ischemic drug.status: publishe

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Cerebral ischemic damage in diabetes: an inflammatory perspective

    Get PDF

    Fatigue in developmental coordination disorder: An exploratory study in adults

    Get PDF
    Background: Fatigue in adult Developmental Coordination Disorder (DCD) is increasingly being acknowledged by clinicians. However, no research to date has explored the nature of fatigue experienced by adults with this disorder.Purpose: This paper aimed to examine fatigue in adult DCD within the context of a range of psychosocial measures such as mood and everyday functioning. Adults with DCD were compared to a group of adults with Chronic Fatigue Syndrome (CFS) and a typically developing/ non-fatigued group.Method: Fifty-three adults with DCD, 84 with CFS and 52 typically developing/ non-CFS adults completed a range of established psychometric measures via an online data collection tool.Results: Findings demonstrated clear differences between the DCD and typically developing/ non-fatigued group for all measures administered, including fatigue (p < 0.001). When compared to the CFS group, adults with DCD showed significantly lower levels of cognitive difficulties (p < 0.05), fatigue (p < 0.001), somatic symptoms (p < 0.001), and total symptoms (p < 0.001). However, no significant differences were found between the DCD and CFS groups in terms of anxiety, depression, cognitive failures, negative and positive affect, and self-esteem.Conclusions: Of particular importance in the current study was the capture of data that corroborated anecdotal evidence of heightened levels of fatigue in adults with DCD along with elevated symptomatology for depression, anxiety, and low selfesteem and difficulties with respect to cognitive functioning and restorative sleep

    Outcome 1 year after SAH from cerebral aneurysm

    No full text
    corecore