130 research outputs found

    A Model for Enhancing Online Course Development

    Get PDF

    CALIBRATING DIVERGENCE TIMES ON SPECIES TREES VERSUS GENE TREES: IMPLICATIONS FOR SPECIATION HISTORY OF APHELOCOMA JAYS

    Full text link
    Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus Aphelocoma to test whether speciation in these jays coincided with mountain uplift or glacial cycles. Gene trees and species trees show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be significantly overestimated with gene-tree based approaches that do not correct for genetic divergence that predates speciation. In addition to coalescent stochasticity, Haldane's rule could account for some differences in timing estimates between mitochondrial DNA and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for testing the links between diversification and specific biogeographic and geologic events.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79292/1/j.1558-5646.2010.01097.x.pd

    The Ursinus Weekly, May 16, 1974

    Get PDF
    Women\u27s hours abolished; Board votes rule change for next Fall • Show Boat and band Parent\u27s Day hits • Will rates go up? • Student writes play • Marsteller to publish constellation slides • New special students to take part in upcoming Summer School session • Yearbook trouble • The ghost of Ursinus past • Editorial: New rules = new responsibilities • Wanted: Fearless leader • Alumni Corner: What happens to Weekly editors? • Meistersingers tour • Art review • In praise of ProTheatre • The Zodiac: The Earth signs: Taurus, Virgo, Capricorn • Record review: Robin Trower: Bridge of Sighs • Seasons are near end • The Cinder scene wrap-uphttps://digitalcommons.ursinus.edu/weekly/1017/thumbnail.jp

    The scale of population structure in Arabidopsis thaliana

    Get PDF
    The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales

    Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers.

    Get PDF
    The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-β peptide (Aβ) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aβ and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aβ and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases

    Global Genetic Structure and Molecular Epidemiology of Encapsulated Haemophilus influenzae

    Get PDF
    A collection of 2,209 isolates of six polysaccharide capsule types of Haemophilus influenzoe, including 1,975 serotype b isolates recovered in 30 countries was characterized for electrophoretically demonstrable allele profiles at 17 metabolic enzyme loci. Two hundred eighty distinct multilocus genotypes were distinguished, and cluster analysis revealed two primary phylogenetic divisions. The population structure of encapsulated H. influenzae is clonal. Currently, most of the invasive disease worldwide is caused by serotype b strains of nine clones, Strains producing serotype c, e, and f capsules belong to single divisions and have no close genetic relationships to strains of other serotypes, Serotype a and b strains occur in both primary phylogenetic divisions, probably as a result of transfer and recombination of serotype-specific sequences of the cap region between clonal lineages. A close genetic relatedness between serotype d isolates and some strains of serotypes a and b was identified, There are strong patterns of geographic variation, on an intercontinental scale, in both the extent of genetic diversity and the clonal composition of populations of encapsulated strains, The analysis suggests that the present distribution of clones is, in part, related to patterns of racial or ethnic differentiation and historical demographic movements of the human host population

    Correction: Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis

    Get PDF
    Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored

    Maternal and infant renal safety following tenofovir disoproxil fumarate exposure during pregnancy in a randomized control trial

    Get PDF
    Background Tenofovir disoproxil fumarate (TDF) in combination with other antiretroviral (ARV) drugs has been in clinical use for HIV treatment since its approval in 2001. Although the effectiveness of TDF in preventing perinatal HIV infection is well established, information about renal safety during pregnancy is still limited. Trial design The IMPAACT PROMISE study was an open-label, strategy trial that randomized pregnant women to one of three arms: TDF based antiretroviral therapy (ART), zidovudine (ZDV) based ART, and ZDV alone (standard of care at start of enrollment). The P1084s substudy was a nested, comparative study of renal outcomes in women and their infants. Methods PROMISE participants (n = 3543) were assessed for renal dysfunction using calculated creatinine clearance (CrCl) at study entry (> 14 weeks gestation), delivery, and postpartum weeks 6, 26, and 74. Of these women, 479 were enrolled in the P1084s substudy that also assessed maternal calcium and phosphate as well as infant calculated CrCl, calcium, and phosphate at birth. Results Among the 1338 women who could be randomized to TDF, less than 1% had a baseline calculated CrCl below 80 mL/min. The mean (standard deviation) maternal calculated CrCl at delivery in the TDF-ART arm [147.0 mL/min (51.4)] was lower than the ZDV-ART [155.0 mL/min (43.3); primary comparison] and the ZDV Alone [158.5 mL/min (45.0)] arms; the mean differences (95% confidence interval) were − 8.0 mL/min (− 14.5, − 1.5) and − 11.5 mL/min (− 18.0, − 4.9), respectively. The TDF-ART arm had lower mean maternal phosphate at delivery compared with the ZDV-ART [− 0.14 mg/dL (− 0.28, − 0.01)] and the ZDV Alone [− 0.17 mg/dL (− 0.31, − 0.02)] arms, and a greater percentage of maternal hypophosphatemia at delivery (4.23%) compared with the ZDV-ART (1.38%) and the ZDV Alone (1.46%) arms. Maternal calcium was similar between arms. In infants, mean calculated CrCl, calcium, and phosphate at birth were similar between arms (all CIs included 0). Conclusions Although mean maternal calculated CrCl at Delivery was lower in the TDF-ART arm, the difference between arms is unlikely to be clinically significant. During pregnancy, the TDF-ART regimen had no observed safety concerns for maternal or infant renal function. Trial Registration: NCT01061151 on 10/02/2010 for PROMISE (1077BF). NCT01066858 on 10/02/2010 for P1084s
    • …
    corecore