199 research outputs found

    A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation

    Get PDF
    Tissue perfusion and mass transport in the vicinity of implant surfaces prior to integration or bonding may play a crucial role in modulating cellular activities associated with bone remodeling, in particular, at early stages of the integration process. Furthermore, fluid displacements have been postulated to transduct mechanical stress signals to bone cells via loading-dependent flow of interstitial fluid through the lacunocanalicular network of bone. Thus, an understanding and new possibilities for influencing these processes may be of great importance for implant success. An ex vivo model was developed and validated for investigation of fluid displacements in bone after endoprosthesis implantation. This model serves to explicate the effects of surgical intervention as well as mechanical loading of the implant-bone construct on load-induced fluid flow in the vicinity of the implant. Using this model, we intend to quantify perfusion and extravascular flow dynamics in the vicinity of implants and define optimal conditions for enhancing molecular transport of osteotropic agents from the implant surface to apposing bone as well as from the blood supply to the implant surface. Furthermore, the elucidation of main transport pathways may help in understanding the distribution of wear particles in bone surrounding implant, a process which has been postulated to cause osteolysis and implant loosenin

    Design and test of the optical fiber assemblies for the scalar magnetic field sensor aboard the JUICE mission

    Get PDF
    A set of optical fiber assemblies has been developed and successfully qualified for its use on a European space science mission to the icy moons of Jupiter (Jupiter Icy Moons Explorer, JUICE), to be launched in 2022. The paper gives an overview of the design challenges, the test methods used for failure detection and screening of the optical fiber cable assemblies as well as the further testing performed in the frame of a lot acceptance qualification

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    Microalgae as second generation biofuel. A review

    Full text link

    Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials

    Full text link
    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials
    • …
    corecore