577 research outputs found

    Atomic quasi-Bragg diffraction in a magnetic field

    Get PDF
    We report on a new technique to split an atomic beam coherently with an easily adjustable splitting angle. In our experiment metastable helium atoms in the |{1s2s}^3S_1 M=1> state diffract from a polarization gradient light field formed by counterpropagating \sigma^+ and \sigma^- polarized laser beams in the presence of a homogeneous magnetic field. In the near-adiabatic regime, energy conservation allows the resonant exchange between magnetic energy and kinetic energy. As a consequence, symmetric diffraction of |M=0> or |M=-1> atoms in a single order is achieved, where the order can be chosen freely by tuning the magnetic field. We present experimental results up to 6th order diffraction (24 \hbar k momentum splitting, i.e., 2.21 m/s in transverse velocity) and present a simple theoretical model that stresses the similarity with conventional Bragg scattering. The resulting device constitutes a flexible, adjustable, large-angle, three-way coherent atomic beam splitter with many potential applications in atom optics and atom interferometry.Comment: 4 pages, 5 figure

    The exact equivalence of the two-flavour strong coupling lattice Schwinger model with Wilson fermions to a vertex model

    Get PDF
    In this paper a method previously employed by Salmhofer to establish an exact equivalence of the one-flavour strong coupling lattice Schwinger model with Wilson fermions to some 8-vertex model is applied to the case with two flavours. As this method is fairly general and can be applied to strong coupling QED and purely fermionic models with any (sufficiently small) number of Wilson fermions in any dimension the purpose of the present study is mainly a methodical one in order to gain some further experience with it. In the paper the vertex model equivalent to the two-flavour strong coupling lattice Schwinger model with Wilson fermions is found. It turns out to be some modified 3-state 20-vertex model on the square lattice, which can also be understood as a regular 6-state vertex model. In analogy with the one- flavour case, this model can be viewed as some loop model.Comment: 22 pages LaTe

    Breakdown of a conservation law in incommensurate systems

    Get PDF
    We show that invariance properties of the Lagrangian of an incommensurate system, as described by the Frenkel Kontorova model, imply the existence of a generalized angular momentum which is an integral of motion if the system remains floating. The behavior of this quantity can therefore monitor the character of the system as floating (when it is conserved) or locked (when it is not). We find that, during the dynamics, the non-linear couplings of our model cause parametric phonon excitations which lead to the appearance of Umklapp terms and to a sudden deviation of the generalized momentum from a constant value, signalling a dynamical transition from a floating to a pinned state. We point out that this transition is related but does not coincide with the onset of sliding friction which can take place when the system is still floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E Replaced 27-03-2001: changes to text, minor revision of figure

    Density matrix renormalization group for the Berezinskii-Kosterlitz-Thouless transition of the 19-vertex model

    Full text link
    We embody the density matrix renormalization group (DMRG) method for the 19-vertex model on a square lattice in order to investigate the Berezinskii-Kosterlitz-Thouless transition. Elements of the transfer matrix of the 19-vertex model are classified in terms of the total value of arrows in one layer of the square lattice. By using this classification, we succeed to reduce enormously the dimension of the matrix which has to be diagonalized in the DMRG method. We apply our method to the 19-vertex model with the interaction K=1.0866K=1.0866 and obtain c=1.006(1)c=1.006(1) for the conformal anomaly. PACS. 05.90.+m, 02.70.-cComment: RevTeX style, 20 pages, 12 figure

    Correlated percolation and the correlated resistor network

    Get PDF
    We present some exact results on percolation properties of the Ising model, when the range of the percolating bonds is larger than nearest-neighbors. We show that for a percolation range to next-nearest neighbors the percolation threshold Tp is still equal to the Ising critical temperature Tc, and present the phase diagram for this type of percolation. In addition, we present Monte Carlo calculations of the finite size behavior of the correlated resistor network defined on the Ising model. The thermal exponent t of the conductivity that follows from it is found to be t = 0.2000 +- 0.0007. We observe no corrections to scaling in its finite size behavior.Comment: 16 pages, REVTeX, 6 figures include

    Loop condensation in the triangular lattice quantum dimer model

    Full text link
    We study the mechanism of loop condensation in the quantum dimer model on the triangular lattice. The triangular lattice quantum dimer model displays a topologically ordered quantum liquid phase in addition to conventionally ordered phases with broken symmetry. In the context of systems with extended loop-like degrees of freedom, the formation of such topological order can be described in terms of loop condensation. Using Monte Carlo calculations with local and directed-loop updates, we compute geometric properties of the transition graph loop distributions of several triangular lattice quantum dimer wavefunctions that display dimer-liquid to dimer-crystal transitions and characterize these in terms of loop condensation.Comment: 22 pages, 12 figures, fixed references and minor typo

    Evidence for Complex Subleading Exponents from the High-Temperature Expansion of the Hierarchical Ising Model

    Get PDF
    Using a renormalization group method, we calculate 800 high-temperature coefficients of the magnetic susceptibility of the hierarchical Ising model. The conventional quantities obtained from differences of ratios of coefficients show unexpected smooth oscillations with a period growing logarithmically and can be fitted assuming corrections to the scaling laws with complex exponents.Comment: 10 pages, Latex , uses revtex. 2 figures not included (hard copies available on request

    Two phase transitions in the fully frustrated XYXY model

    Full text link
    The fully frustrated XYXY model on a square lattice is studied by means of Monte Carlo simulations. A Kosterlitz-Thouless transition is found at TKT0.446T_{\rm KT} \approx 0.446, followed by an ordinary Ising transition at a slightly higher temperature, Tc0.452T_c \approx 0.452. The non-Ising exponents reported by others, are explained as a failure of finite size scaling due to the screening length associated with the nearby Kosterlitz-Thouless transition.Comment: REVTEX file, 8 pages, 5 figures in uuencoded postscrip

    Critical behavior of the frustrated antiferromagnetic six-state clock model on a triangular lattice

    Full text link
    We study the anti-ferromagnetic six-state clock model with nearest neighbor interactions on a triangular lattice with extensive Monte-Carlo simulations. We find clear indications of two phase transitions at two different temperatures: Below TIT_I a chirality order sets in and by a thorough finite size scaling analysis of the specific heat and the chirality correlation length we show that this transition is in the Ising universality class (with a non-vanishing chirality order parameter below TIT_I). At TKT(<TI)T_{KT}(<T_I) the spin-spin correlation length as well as the spin susceptibility diverges according to a Kosterlitz-Thouless (KT) form and spin correlations decay algebraically below TKTT_{KT}. We compare our results to recent x-ray diffraction experiments on the orientational ordering of CF3_3Br monolayers physisorbed on graphite. We argue that the six-state clock model describes the universal feature of the phase transition in the experimental system and that the orientational ordering belongs to the KT universality class.Comment: 8 pages, 9 figure

    A Monte Carlo simulation of ion transport at finite temperatures

    Full text link
    We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. A special attention has been paid to properly treat the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulas for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The developed techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+^+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics.Comment: 14 page
    corecore