1,380 research outputs found
Study of Magnetic Excitation in Singlet-Ground-State Magnets CsFeCl and RbFeCl by Nuclear Magnetic Relaxation
The temperature dependences of spin-lattice relaxation time of
Cs in CsFeCl and Rb in RbFeCl were measured in the
temperature range between 1.5 K and 22 K, at various fields up to 7 T applied
parallel (or perpendicular) to the c-axis, and the analysis was made on the
basis of the DCEFA. The mechanism of the nuclear magnetic relaxation is
interpreted in terms of the magnetic fluctuations which are characterized by
the singlet ground state system. In the field region where the phase transition
occurs, exhibited the tendency of divergence near , and
this feature was ascribed to the transverse spin fluctuation associated with
the mode softening at the -point. It was found that the damping constant of
the soft mode is remarkably affected by the occurrence of the magnetic ordering
at lower temperature, and increases largely in the field region where the phase
transition occurs.Comment: 12 pages, 18 figures, submitted to J. Phys. Soc. Jp
Classification of double flag varieties of complexity 0 and 1
A classification of double flag varieties of complexity 0 and 1 is obtained.
An application of this problem to decomposing tensor products of irreducible
representations of semisimple Lie groups is considered
Model-based aberration corrected microscopy inside a glass tube
Microscope objectives achieve near diffraction-limited performance only when
used under the conditions they are designed for. In non-standard geometries,
such as thick cover slips or curved surfaces, severe aberrations arise,
inevitably impairing high-resolution imaging. Correcting such large aberrations
using standard adaptive optics can be challenging: existing solutions are
either not suited for strong aberrations, or require extensive feedback
measurements, consequently taking a significant portion of the photon budget.
We demonstrate that it is possible to pre-compute the corrections needed for
high-resolution imaging inside a glass tube based on a priori information only.
Our ray-tracing based method achieved over an order of magnitude increase in
image contrast without the need for a feedback signal.Comment: 9 pages, 3 figures, 1 table. Submitted to Optics Expres
The Rise Times of High and Low Redshift Type Ia Supernovae are Consistent
We present a self-consistent comparison of the rise times for low- and
high-redshift Type Ia supernovae. Following previous studies, the early light
curve is modeled using a t-squared law, which is then mated with a modified
Leibundgut template light curve. The best-fit t-squared law is determined for
ensemble samples of low- and high-redshift supernovae by fitting simultaneously
for all light curve parameters for all supernovae in each sample. Our method
fully accounts for the non-negligible covariance amongst the light curve
fitting parameters, which previous analyses have neglected. Contrary to Riess
et al. (1999), we find fair to good agreement between the rise times of the
low- and high-redshift Type Ia supernovae. The uncertainty in the rise time of
the high-redshift Type Ia supernovae is presently quite large (roughly +/- 1.2
days statistical), making any search for evidence of evolution based on a
comparison of rise times premature. Furthermore, systematic effects on rise
time determinations from the high-redshift observations, due to the form of the
late-time light curve and the manner in which the light curves of these
supernovae were sampled, can bias the high-redshift rise time determinations by
up to +3.6/-1.9 days under extreme situations. The peak brightnesses - used for
cosmology - do not suffer any significant bias, nor any significant increase in
uncertainty.Comment: 18 pages, 4 figures, Accepted for publication in the Astronomical
Journal. Also available at http://www.lbl.gov/~nugent/papers.html Typos were
corrected and a few sentences were added for improved clarit
Dark Energy Accretion onto a Black Hole in an Expanding Universe
By using the solution describing a black hole embedded in the FLRW universe,
we obtain the evolving equation of the black hole mass expressed in terms of
the cosmological parameters. The evolving equation indicates that in the
phantom dark energy universe the black hole mass becomes zero before the Big
Rip is reached.Comment: 7 pages, no figures, errors is correcte
Polarizations and Nullcone of Representations of Reductive Groups
The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let f_1,f_2,...,f_n be homogeneous invariant functions. Then the polarizations of f_1,f_2,...,f_n define the nullcone of k 0} h(t) x = 0 for all x in L. This is then applied to many examples. A surprising result is about the group SL(2,C) where almost all representations V have the property that all linear subspaces of the nullcone are annihilated. Again, this has interesting applications to the invariants on several copies. Another result concerns the n-qubits which appear in quantum computing. This is the representation of a product of n copies of on the n-fold tensor product C^2 otimes C^2 otimes ... otimes C^2. Here we show just the opposite, namely that the polarizations never define the nullcone of several copies if n <= 3. (An earlier version of this paper, distributed in 2002, was split into two parts; the first part with the title ``On the nullcone of representations of reductive groups'' is published in Pacific J. Math. {bf 224} (2006), 119--140.
Chemical Graph Theory . VII.1 Enumeration and Generation of the Non-ionic/Radical Members of Cyanopolyyne Family
Algorithms for the enumeration and generation of non-ionic/radical members of the cyanopolyyne family are developed
Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification
Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3â untranslated regions is associated with decreased relative transcript abundance and defective RNA 30 end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode
Quantitative adsorbate structure determination under catalytic reaction conditions
Current methods allow quantitative local structure determination of adsorbate geometries on surfaces in ultrahigh vacuum (UHV) but are incompatible with the higher pressures required for a steady-state catalytic reactions. Here we show that photoelectron diffraction can be used to determine the structure of the methoxy and formate reaction intermediates during the steady-state oxidation of methanol over Cu(110) by taking advantage of recent instrumental developments to allow near-ambient pressure x-ray photoelectron spectroscopy. The local methoxy site differs from that under static UHV conditions, attributed to the increased surface mobility and dynamic nature of the surface under reaction conditions
K-corrections and Extinction Corrections for Type Ia Supernovae
The measurement of the cosmological parameters from Type Ia supernovae hinges
on our ability to compare nearby and distant supernovae accurately. Here we
present an advance on a method for performing generalized K-corrections for
Type Ia supernovae which allows us to compare these objects from the UV to
near-IR over the redshift range 0<z<2. We discuss the errors currently
associated with this method and how future data can improve upon it
significantly. We also examine the effects of reddening on the K-corrections
and the light curves of Type Ia supernovae. Finally, we provide a few examples
of how these techniques affect our current understanding of a sample of both
nearby and distant supernovae.Comment: Accepted for the August issue of PASP. 39 pages, 15 figure
- âŠ