3,387 research outputs found

    The environmental distribution of late proterozoic organisms

    Get PDF
    Along present day coast lines, the environmental distributions of prokaryotic and protistan populations are often sharply delimited. Realized habitat ranges are generally narrower than those circumscribed by physiological tolerances, suggesting the importance of organism-organism interactions in the determination of population distributions. Microfossil populations preserved in silicified carbonates, dolomites, and shales of the 700-800 Ma old Akademikerbreen Group, Svalbard, and elsewhere indicate that the environmental distributions were defined equally clearly during the Proterozoic Eon. The Draken Conglomerate Formation is a tidal flat/lagoonal complex in which we have distinguished five principle biofacies containing a total of 42 taxa. Supratidal to subtidal gradients include the increasing abundance and diversity of both mat dweller microbenthos and allochthonous (principally planktonic) organisms, as well as a taphonomically important pattern of decreasing sheath thickness among mat builder microorganisms. The seaward barriers of Akademikerbreen lagoons were oolitic shoals, and these contain about a dozen endolithic and epilithic species not observed elsewhere in the group. Subtidal environments below fair weather wave base are represented by mudstones of the Svanbergfjellet Formation. These contain abundant and diverse cyanobacteria-like fossils generally similar to but specifically different from those found in tidal flat sediments, as well as diverse unicellular protists (some of impressive morphological complexity) and at least half a dozen cellularly preserved metaphyte populations. In all, more than 80 species are distributed among Akademikerbreen lithologies. Fossil assemblages from Svalbard and elsewhere illustrate the potential for a much finer paleoecological, biostratigraphic, and, hence, evolutionary resolution of the early fossil record

    The RTR complex as caretaker of genome stability and its unique meiotic function in plants

    Get PDF
    The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO)-associated meiotic gene conversion (GC) differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO) could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis

    Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions

    Full text link
    Data from KEK on subthreshold \bar{\mrm{p}} as well as on π±\pi^\pm and \mrm{K}^\pm production in proton-, deuteron- and α\alpha-induced reactions at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described within a unified approach. We use a model which considers a nuclear reaction as an incoherent sum over collisions of varying numbers of projectile and target nucleons. It samples complete events and thus allows for the simultaneous consideration of all final particles including the decay products of the nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross section, as well as the moderate increase of meson production in deuteron and α\alpha induced compared to proton-induced reactions, is well reproduced for all target nuclei. In our approach, the observed enhancement near the production threshold is mainly due to the contributions from the interactions of few-nucleon clusters by simultaneously considering fragmentation processes of the nuclear residues. The ability of the model to reproduce the target mass dependence may be considered as a further proof of the validity of the cluster concept.Comment: 9 pages, 4 figure

    Renormalization in Self-Consistent Approximation schemes at Finite Temperature III: Global Symmetries

    Get PDF
    We investigate the symmetry properties for Baym's Φ\Phi-derivable schemes. We show that in general the solutions of the dynamical equations of motion, derived from approximations of the Φ\Phi-functional, do not fulfill the Ward-Takahashi identities of the symmetry of the underlying classical action, although the conservation laws for the expectation values of the corresponding Noether currents are fulfilled exactly for the approximation. Further we prove that one can define an effective action functional in terms of the self-consistent propagators which is invariant under the operation of the same symmetry group representation as the classical action. The requirements for this theorem to hold true are the same as for perturbative approximations: The symmetry has to be realized linearly on the fields and it must be free of anomalies, i.e., there should exist a symmetry conserving regularization scheme. In addition, if the theory is renormalizable in Dyson's narrow sense, it can be renormalized with counter terms which do not violate the symmetry.Comment: 32 papges, 3 figures, uses ReVTeX 4, V2: Added one more reference, V3: Corrected some typos, added two more sections about the large-N expansio

    Reversing Chromatin Accessibility Differences that Distinguish Homologous Mitotic Metaphase Chromosomes

    Get PDF
    BACKGROUND: Chromatin-modifying reagents that alter histone associating proteins, DNA conformation or its sequence are well established strategies for studying chromatin structure in interphase (G1, S, G2). Little is known about how these compounds act during metaphase. We assessed the effects of these reagents at genomic loci that show reproducible, non-random differences in accessibility to chromatin that distinguish homologous targets by single copy DNA probe fluorescence in situ hybridization (scFISH). By super-resolution 3-D structured illumination microscopy (3D-SIM) and other criteria, the differences correspond to \u27differential accessibility\u27 (DA) to these chromosomal regions. At these chromosomal loci, DA of the same homologous chromosome is stable and epigenetic hallmarks of less accessible interphase chromatin are present. RESULTS: To understand the basis for DA, we investigate the impact of epigenetic modifiers on these allelic differences in chromatin accessibility between metaphase homologs in lymphoblastoid cell lines. Allelic differences in metaphase chromosome accessibility represent a stable chromatin mark on mitotic metaphase chromosomes. Inhibition of the topoisomerase IIα-DNA cleavage complex reversed DA. Inter-homolog probe fluorescence intensity ratios between chromosomes treated with ICRF-193 were significantly lower than untreated controls. 3D-SIM demonstrated that differences in hybridized probe volume and depth between allelic targets were equalized by this treatment. By contrast, DA was impervious to chromosome decondensation treatments targeting histone modifying enzymes, cytosine methylation, as well as in cells with regulatory defects in chromatid cohesion. These data altogether suggest that DA is a reflection of allelic differences in metaphase chromosome compaction, dictated by the localized catenation state of the chromosome, rather than by other epigenetic marks. CONCLUSIONS: Inhibition of the topoisomerase IIα-DNA cleavage complex mitigated DA by decreasing DNA superhelicity and axial metaphase chromosome condensation. This has potential implications for the mechanism of preservation of cellular phenotypes that enables the same chromatin structure to be correctly reestablished in progeny cells of the same tissue or individual

    Renormalization in Self-Consistent Approximations schemes at Finite Temperature I: Theory

    Full text link
    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym''s Φ\Phi-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamical potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ\Phi-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation schemes to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences.Comment: 22 Pages 1 figure, uses RevTeX4. The Revision concerns the correction of some minor typos, a clarification concerning the real-time contour structure of renormalization parts and some comments concerning symmetries in the conclusions and outloo
    corecore