3,021 research outputs found

    Low-loss spraying

    Get PDF
    “Low-loss spraying“ is a new application technique which has been developed by the Association of Styrian Commercial Fruit Growers (Austria), the Marktgemeinschaft Bodenseeobst (Germany) and the South Tyrolean Extension Service for Fruit- and Winegrowing (Italy) and is being put into practice at present.These three fruit-growing regions, which use for the most part the same sprayer types, are faced with new challenges: larger areas per sprayer with higher trees, also in intensive orchards, than in the past (up to 4 m), stricter standards regarding drift reduction, power consumption and noise. The pivotal element of this new application technique is an optimized and controlled air blast. The direction and intensity of the air stream are important factors for the coverage and the losses caused by spray drift. Therefore, the professional school for fruit-growing at Gleisdorf (Austria) constructed an air-flow test bench, which served as a model for three new test stands, which were bought by the Marktgemeinschaft Bodenseeobst, the South Tyrolean Extension Service and the manufacturer of spraying equipment Lochmann.In addition to the usual legal requirements, “low-loss” sprayers have to be equipped with a fan producing an appropriate vertical distribution of the air, drift-reducing flat jet injector nozzles at the top and hollow-cone nozzles below them as well as standardized test ports for the pump and pressure gauge. It is indispensable for the grower to have access to appropriate training and counselling in order to be able to adjust his sprayer in an optimal way to the shape of his trees with regard to air flow, water and pesticide amount, pressure, forward speed and rotation speed of the PTO

    Reversing Chromatin Accessibility Differences that Distinguish Homologous Mitotic Metaphase Chromosomes

    Get PDF
    BACKGROUND: Chromatin-modifying reagents that alter histone associating proteins, DNA conformation or its sequence are well established strategies for studying chromatin structure in interphase (G1, S, G2). Little is known about how these compounds act during metaphase. We assessed the effects of these reagents at genomic loci that show reproducible, non-random differences in accessibility to chromatin that distinguish homologous targets by single copy DNA probe fluorescence in situ hybridization (scFISH). By super-resolution 3-D structured illumination microscopy (3D-SIM) and other criteria, the differences correspond to \u27differential accessibility\u27 (DA) to these chromosomal regions. At these chromosomal loci, DA of the same homologous chromosome is stable and epigenetic hallmarks of less accessible interphase chromatin are present. RESULTS: To understand the basis for DA, we investigate the impact of epigenetic modifiers on these allelic differences in chromatin accessibility between metaphase homologs in lymphoblastoid cell lines. Allelic differences in metaphase chromosome accessibility represent a stable chromatin mark on mitotic metaphase chromosomes. Inhibition of the topoisomerase IIα-DNA cleavage complex reversed DA. Inter-homolog probe fluorescence intensity ratios between chromosomes treated with ICRF-193 were significantly lower than untreated controls. 3D-SIM demonstrated that differences in hybridized probe volume and depth between allelic targets were equalized by this treatment. By contrast, DA was impervious to chromosome decondensation treatments targeting histone modifying enzymes, cytosine methylation, as well as in cells with regulatory defects in chromatid cohesion. These data altogether suggest that DA is a reflection of allelic differences in metaphase chromosome compaction, dictated by the localized catenation state of the chromosome, rather than by other epigenetic marks. CONCLUSIONS: Inhibition of the topoisomerase IIα-DNA cleavage complex mitigated DA by decreasing DNA superhelicity and axial metaphase chromosome condensation. This has potential implications for the mechanism of preservation of cellular phenotypes that enables the same chromatin structure to be correctly reestablished in progeny cells of the same tissue or individual

    Low-Loss-Spray-Application - The scientific basis

    Get PDF
    Limited time frames caused by infection threat and weather demand for efficient pesticide application techniques in modern integrated and organic fruit farming. This demand is best complied by low volume spraying, since it minimizes traveling time and number of fillings per spray treatment, but also minimizes the probability of a contamination of the operator with concentrated pesticides. To obtain good spray deposition, low volume spray application demands small droplets which offer numerous benefits, but also carry a high drift potential. This feature threatened the technique, because no method for spray drift reduction has been available in order to make use of reduced buffer zones to water courses and non-target areas. A new method based on cross flow characteristics of the sprayer fan, canopy adapted forward speed and fan speed and a mixed set of hollow cone nozzles and air induction nozzles resulted in an approx. 85% reduction of particle drift deposits, so that the method has been registered in the official German list of drift reducing devices in the 75% drift reduction class. Besides drift reduction a canopy adapted fan speed also results in an enormous reduction of fuel consumption and noise emission as further environmental benefits of small droplets. An assessment of the influence of a canopy adapted forward speed and fan speed on spray deposit, relative spray coverage and droplet deposit density revealed a significant increase of the application efficiency, rising with decreasing canopy width and compensating a reduction of water volume and dose rate from canopy related dosing models. Testing a tower sprayer in orchards for use with reduced fan speed unexpectedly showed an unusable vertical air distribution. Alarmed by this finding, a subsequent testing of various fan types on a test bench disclosed a very unsatisfying vertical air distribution of many fan types and even within a production series the air distribution differed enormously. Especially an uneven horizontal reach of the air stream over working height is a major obstacle for a successful use of canopy adapted fan speed with all its benefits. Since a uniform vertical air distribution is the basic requirement for a highly efficient and environmentally safer spray application not only in terms of the potential to reduce pesticide consumption, but also for reducing fuel consumption and noise emissions, testing and adjusting fans of orchard sprayers on a test bench is urgently needed. Because of the importance of the topic, three fruit growers associations in Austria, Italy and Germany together initiated the development of a new test bench to measure vertical air distribution of orchard sprayers

    New Measurement of the Relative Scintillation Efficiency of Xenon Nuclear Recoils Below 10 keV

    Full text link
    Liquid xenon is an important detection medium in direct dark matter experiments, which search for low-energy nuclear recoils produced by the elastic scattering of WIMPs with quarks. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. We report a new measurement of the relative scintillation efficiency below 10 keV performed with a liquid xenon scintillation detector, optimized for maximum light collection. Greater than 95% of the interior surface of this detector was instrumented with photomultiplier tubes, giving a scintillation yield of 19.6 photoelectrons/keV electron equivalent for 122 keV gamma rays. We find that the relative scintillation efficiency for nuclear recoils of 5 keV is 0.14, staying constant around this value up to 10 keV. For higher energy recoils we measure a value around 20%, consistent with previously reported data. In light of this new measurement, the XENON10 experiment's results on spin-independent WIMP-nucleon cross section, which were calculated assuming a constant 0.19 relative scintillation efficiency, change from 8.8×10448.8\times10^{-44} cm2^2 to 9.9×10449.9\times10^{-44} cm2^2 for WIMPs of mass 100 GeV/c2^2, and from 4.4×10444.4\times10^{-44} cm2^2 to 5.6×10445.6\times10^{-44} cm2^2 for WIMPs of mass 30 GeV/c2^2.Comment: 8 pages, 8 figure

    Coulomb Distortion Effects for (e,e'p) Reactions at High Electron Energy

    Get PDF
    We report a significant improvement of an approximate method of including electron Coulomb distortion in electron induced reactions at momentum transfers greater than the inverse of the size of the target nucleus. In particular, we have found a new parametrization for the elastic electron scattering phase shifts that works well at all electron energies greater than 300 MeVMeV. As an illustration, we apply the improved approximation to the (e,ep)(e,e'p) reaction from medium and heavy nuclei. We use a relativistic ``single particle'' model for (e,ep)(e,e'p) as as applied to 208Pb(e,ep)^{208}Pb(e,e'p) and to recently measured data at CEBAF on 16O(e,ep)^{16}O(e,e'p) to investigate Coulomb distortion effects while examining the physics of the reaction.Comment: 14 pages, 3 figures, PRC submitte

    Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools

    Get PDF
    Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant software, a commercially available video bioinformatics tool, can be used to extract quantitative data on: (1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and (4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and colonies. Time-lapse experiments in which different cell types were subjected to various chemical exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels). Colony and single cell migration were studied by measuring total displacement (distance between the starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production, cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant software can be used to evaluate biological processes in living cells, and the protocols developed in this project can be applied to basic research and toxicological studies, or to monitor quality control in culture facilities

    Analytical approximation for the sphere-sphere Coulomb potential

    Get PDF
    A simple analytical expression, which closely approximates the Coulomb potential between two uniformly charged spheres, is presented. This expression can be used in the optical potential semiclassical analyses which require that the interaction be analytic on and near the real r-axis.Comment: 4 pages including 3 figures and 1 tabl

    Calculated gamma ray response characteristics of semiconductor detectors

    Full text link
    A Monte Carlo computer program has been used to calculate characteristics of the response of fully depleted silicon and germanium radiation detectors to monoenergetic gamma rays. Data for total absorption probability, intrinsic efficiency, escape peak efficiency and pulse height spectra are presented as functions of detector thickness and photon energy. Other parameters of interest in analysing detector response are also given. The results of a second Monte Carlo calculation of electron migration in silicon and germanium are employed to account for the leakage of secondary electrons from the detector volume. Bremsstrahlung energy loss by electrons is also simulated. The calculations are expected to be applicable in those cases in which secondary electron energies do not exceed 2 MeV. Comparison with experiment shows good agreement within this limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33414/1/0000815.pd

    Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project

    Get PDF
    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fuer Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM
    corecore