312 research outputs found

    Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matte

    On the feasibility of cooling and trapping metastable alkaline-earth atoms

    Get PDF
    Metastability and long-range interactions of Mg, Ca, and Sr in the lowest-energy metastable 3P2^3P_2 state are investigated. The calculated lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*, supporting feasibility of cooling and trapping experiments. The quadrupole-quadrupole long-range interactions of two metastable atoms are evaluated for various molecular symmetries. Hund's case (c) 4_g potential possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses can possibly be reduced using cold metastable atoms in a stretched M=2 state. Calculations were performed in the framework of ab initio relativistic configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR

    Polar optical phonons in wurtzite spheroidal quantum dots: Theory and application to ZnO and ZnO/MgZnO nanostructures

    Full text link
    Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to a freestanding spheroidal ZnO quantum dot and to a spheroidal ZnO quantum dot embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotropic) quantum dots. The obtained results allow one to explain and accurately predict phonon peaks in the Raman spectra of wurtzite nanocrystals, nanorods (prolate spheroids), and epitaxial quantum dots (oblate spheroids).Comment: 11 page

    Wavelength-scale stationary-wave integrated Fourier-transform spectrometry

    Get PDF
    Spectrometry is a general physical-analysis approach for investigating light-matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)-an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon-is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt, using SWIFTS, to produce a very small integrated one-dimensional spectrometer suitable for applications where microspectrometers are essential

    Classical and quantum chaos in a circular billiard with a straight cut

    Full text link
    We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. This system can be integrable, nonintegrable with soft chaos, or nonintegrable with hard chaos, as we vary the size of the cut. We use a quantum web to show differences in the quantum manifestations of classical chaos for these three different regimes.Comment: LaTeX2e, 8 pages including 3 Postscript figures and 4 GIF figures, submitted to Phys. Rev.

    Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity

    Get PDF
    Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the ÎČ subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the ÎČ subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-ÎČ1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC

    Ultrafast relaxation of photoexcited carriers in semiconductor quantum wires: A Monte Carlo approach

    Get PDF
    A detailed analysis of the cooling and thermalization process for photogenerated carriers in semiconductor quantum wires is presented. The energy relaxation of the nonequilibrium carrier distribution is investigated for the ‘‘realistic'' case of a rectangular multisubband quantum-wire structure. By means of a direct ensemble Monte Carlo simulation of both the carrier and the phonon dynamics, all the nonlinear phenomena relevant for the relaxation process, such as carrier-carrier interaction, hot-phonon effects, and degeneracy, are investigated. The results of these simulated experiments show a significant reduction of the carrier-relaxation process compared to the bulk case, which is mainly due to the reduced efficiency of carrier-carrier scattering; on the contrary, the role of hot-phonon effects and degeneracy seems to be not so different from that played in bulk semiconductors

    Assessment of the direct effects of DDAH I on tumour angiogenesis in vivo

    Get PDF
    Nitric oxide (NO) has been strongly implicated in glioma progression and angiogenesis. The endogenous inhibitors of NO synthesis, asymmetric dimethylarginine (ADMA) and N-monomethyl-l-arginine (l-NMMA), are metabolized by dimethylarginine dimethylaminohydrolase (DDAH), and hence, DDAH is an intracellular factor that regulates NO. However, DDAH may also have an NO-independent action. We aimed to investigate whether DDAH I has any direct role in tumour vascular development and growth independent of its NO-mediated effects, in order to establish the future potential of DDAH inhibition as an anti-angiogenic treatment strategy. A clone of rat C6 glioma cells deficient in NO production expressing a pTet Off regulatable element was identified and engineered to overexpress DDAH I in the absence of doxycycline. Xenografts derived from these cells were propagated in the presence or absence of doxycycline and susceptibility magnetic resonance imaging used to assess functional vasculature in vivo. Pathological correlates of tumour vascular density, maturation and function were also sought. In the absence of doxycycline, tumours exhibited high DDAH I expression and activity, which was suppressed in its presence. However, overexpression of DDAH I had no measurable effect on tumour growth, vessel density, function or maturation. These data suggest that in C6 gliomas DDAH has no NO-independent effects on tumour growth and angiogenesis, and that the therapeutic potential of targeting DDAH in gliomas should only be considered in the context of NO regulation

    Achievements and Challenges in the Science of Space Weather

    Get PDF
    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.Peer reviewe

    Characterization of pulmonary function in 10Ăą18 year old patients with Duchenne muscular dystrophy

    Get PDF
    Pulmonary function loss in patients with Duchenne muscular dystrophy (DMD) is progressive and leads to pulmonary insufficiency. The purpose of this study in 10Ăą18 year old patients with DMD is the assessment of the inter-correlation between pulmonary function tests (PFTs), their reliability and the association with the general disease stage measured by the Brooke score. Dynamic PFTs (peak expiratory flow [PEF], forced vital capacity [FVC], forced expiratory volume in one second [FEV1]) and maximum static airway pressures (MIP, MEP) were prospectively collected from 64 DMD patients enrolled in the DELOS trial (ClinicalTrials.gov, number NCT01027884). Baseline PEF percent predicted (PEF%p) was <80% and patients had stopped taking glucocorticoids at least 12 months prior to study start. At baseline PEF%p, FVC%p and FEV1%p correlated well with each other (Spearman's rho: PEF%pĂąFVC%p: 0.54; PEF%pĂąFEV1%p: 0.72; FVC%pĂąFEV1%p: 0.91). MIP%p and MEP%p correlated well with one another (MIP%pĂąMEP%p: 0.71) but less well with PEF%p (MIP%pĂąPEF%p: 0.40; MEP%pĂąPEF%p: 0.41) and slightly better with FVC%p (MIP%pĂąFVC%p: 0.59; MEP%pĂąFVC%p: 0.74). The within-subject coefficients of variation (CV) for successive measures were 6.97% for PEF%p, 6.69% for FVC%p and 11.11% for FEV1%p, indicating that these parameters could be more reliably assessed compared to maximum static airway pressures (CV for MIP%p: 18.00%; MEP%p: 15.73%). Yearly rates of PFT decline (placebo group) were larger in dynamic parameters (PEF%p: Ăą8.9% [SD 2.0]; FVC%p: Ăą8.7% [SD 1.1]; FEV1%p: Ăą10.2% [SD 2.0]) than static airway pressures (MIP%p: Ăą4.5 [SD 1.3]; MEP%p: Ăą2.8 [SD 1.1]). A considerable drop in dynamic pulmonary function parameters was associated with loss of upper limb function (transition from Brooke score category 4 to category 5). In conclusion, these findings expand the understanding of the reliability, correlation and evolution of different pulmonary function measures in DMD patients who are in the pulmonary function decline phase
    • 

    corecore