17,823 research outputs found

    Steady-state distributions for models of bubbles: their existence and econometric implications

    Get PDF
    The purpose of this paper is to examine the properties of bubbles in the light of steady state results for threshold auto-regressive (TAR) models recently derived by Knight and Satchell (2011). We assert that this will have implications for econometrics. We study the conditions under which we can obtain a steady state distribution of asset prices using our simple model of bubbles based on our particular definition of a bubble. We derive general results and further extend the analysis by considering the steady state distribution in three cases of a (I) a normally distributed error process, (II) a non normally (exponentially) distributed steady-state process and (III) a switching random walk with a fairly general i.i.d error process We then examine the issues related to unit root testing for the presence of bubbles using standard econometric procedures. We illustrate as an example, the market for art, which shows distinctly bubble-like characteristics. Our results shed light on the ubiquitous finding of no bubbles in the econometric literature

    Ecological validity of a simplified version of the multiple errands shopping test

    Get PDF
    Shallice and Burgess (1991) reported the utility of the Multiple Errands Test (MET) in discriminating executive deficits in three frontal lobe patients with preserved high IQ, who were otherwise unimpaired on tests of executive function. The aim of this study was to ascertain the value of a simplified version of the MET (MET-SV) for use with the range of people more routinely encountered in clinical practice. Main findings were as follows: 1) The test discriminated well between neurological patients and controls, and the group effects remained when the difference in current general cognitive functions (WAIS-R FSIQ) was taken into account. 2) The best predictors of performance in the healthy control group (n = 46) were age and the number of times participants asked for help (with more requests associated with poorer performance). 3) In the neurological group, two clear patterns of failure emerged, with performance either characterized by rule breaking or failure to achieve tasks. These two patterns were associated with different dysexecutive symptoms in everyday life. 4) The patients not only made more errors than controls, but also different ones. A scoring method that took this into account markedly increased test sensitivity. 5) Many patients passed traditional tests of executive frontal lobe function but still failed the MET-SV This pattern was strongly associated with observed dysexecutive symptoms in everyday life. The results demonstrate the clinical utility of the test, and suggest that there are two common and independent sources of failure on multitasking tests in a general neurological population: memory dysfunction, and initiation problems

    The shape of the urine stream — from biophysics to diagnostics

    Get PDF
    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation

    Computational structural mechanics: A new activity at the NASA Langley Research Center

    Get PDF
    Complex structures considered for the late 1980's and early 1990's include composite primary aircraft structures and the space station. These structures are much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. A major research activity in computational structural mechanics (CSM) was initiated. The objective of the CSM activity is develop advanced structural analysis technology that will exploit modern and emerging computers such as computers with vector and/or parallel processing capabilities. The three main research activities underway in CSM include: (1) structural analysis methods development; (2) a software testbed for evaluating the methods; and (3) numerical techniques for parallel processing computers. The motivation and objectives of the CSM activity are presented and CSM activity is described. The current CSM research thrusts, and near and long term CSM research thrusts are outlined

    Nonlinear transient analysis via energy minimization

    Get PDF
    The formulation basis for nonlinear transient analysis of finite element models of structures using energy minimization is provided. Geometric and material nonlinearities are included. The development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. The results indicate the effectiveness of the technique as a viable tool for this purpose

    Efficiency of unconstrained minimization techniques in nonlinear analysis

    Get PDF
    Unconstrained minimization algorithms have been critically evaluated for their effectiveness in solving structural problems involving geometric and material nonlinearities. The algorithms have been categorized as being zeroth, first, or second order depending upon the highest derivative of the function required by the algorithm. The sensitivity of these algorithms to the accuracy of derivatives clearly suggests using analytically derived gradients instead of finite difference approximations. The use of analytic gradients results in better control of the number of minimizations required for convergence to the exact solution

    Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels

    Get PDF
    The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode
    corecore