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1. Introduction 

The prediction o f  transient  linear. or nonlinear  response  of  structures 

is  almost  invariably  accomplished by using a temporal  finite-difference 

scheme  to  effectively  eliminate  time  as  a  variable and  reduce  the  system 

to  a set of algebraic  equations  in  the  unknown  nodal  variables  of  the 

finite  element  discretization.  Finite  differencing in time  mqy  be 

either of the  explicit  or  implicit  type.  Furthermore,  the  resulting 

a,lgebraic  equations  may be at  timeslinearized  within a  time step. The 

type of temporal  scheme  chosen  together  with  response  approximations 

determines  the  computational  effort  required  to  solve  for  the  unknowns 

at  time  (t+At)  knowirig.  the same  at  time t.  With  an  explicit  scheme  such 

effort  is  small a1 though  stability  considerations 1 imit  the  size  of  the  time 

step.  On  the  other  hand,  with  an  implicit  scheme  the  computational  effort 

within a  time  step  may be significant  but  inherent  stability of the 

scheme  permits  larger  time  steps  compared  to  those  allowed by explicit 

schemes. Of interest in this  paper  are  those  schemes  which  essentially 

linearize  response  within a time  step and use an explicit  scheme  as in 

DYCAST [ I ]  and those  which  do  not  linearize  response  within a time  step 

and  use  an  implicit  scheme  as in ACTION [ 2 ]  . 
For  schemes  which  do  not  linearize  the  response  within a  time  step, 

several  different  techniques  for  the  solution of the  nonlinear  equations 

may be  used.  Such  techniques  have  been  discussed  at  great  lengths by 

Bergan [3] and Stricklin et a1 [41 . Of particular  interest  is  the 

technique  utilizing  the  minimization  algorithms  of  mathematical  programming. 

This  approach  has  been  used  successfully  for  nonlinear  structural  analyses 
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[51 - [7 ] .  In  this case, the  problem of finding  the  solution of the eq.utl-lbri.um 
equations  ean  be  equivalently  posed as the one corresponding  to  the  minimum 

value of a potential  function.  For  all  structural  problems  with  geometric 

and  material  nonlinearities of the  type  consider'ed  herein  such a potential 

function  always  exists. However,  only  positive or negative  definite 

systems  can  be  handled by this  technique  with  the  result  that  some un- 

stable  equilibrium  configurations  for  which  the  potential  function has a 

non-definite  form  remain  intractable.  This  is  not  a  very  serious  limitation 

however,  since  the  determination of such  eauilibrium  configurations  is 

usually of academic  interest. 

The  two  simultators  DYCAST  and  ACTION  are  intended for solving 

inertial  problems  such  as  those  involving  the  elastic-plastic  large 

deformation  response o f  structures.  It  is  well-known that, more  often 

than not, such  problems  are  best  solved by implicit  techniques [SI .  

Since, the  solution  effort  within a time  step  with  an  implicit  scheme, 

with  or  without  linearization, is by PO means minimal  but  presumably 

comparable  to  that  using  minimization  alqorithms,  the  latter  are  appeal- 

ing in that  they  soTve  the  actual  nonlinear  problem.  Hence,  a  rather 

rigorous  evaluation of their  effectiveness in predicting  nonlinear 

structural  response  is  deemed  necessary. Of course, similar  investiga- 

tions  have  been  carried out by previous  investigators [9J,[lOl,[llj, 

but  only  as  regards  the  minimization  of  nonlinear  mathematical  functions. 

Geometric and  material  nonlinearities  cannot in general  be  described by 

smooth  nonlinear  functions  of  the  type  considered by previous  investiga- 

tors. An energy  evaluation  for  an  inelastic  member  is  several  times  more 

2 



expensive  than  that  for  a  purely  elastic  member.  Furthermore,  the  com- 

putational  effort  involved  in the  function and gradient  evaluations in 

the  case of finite  element  models,  with  rather specialized  connectivity 

properties  leading  to  banded  stiffness matrices, may  bear  no  direct 

and simple  relationship  with  the  computational  effort  for  simple  mathe- 

matical  functions. The  conclusions  regarding  the  effectiveness of these 

algorithms  for  solving  nonlinear  problems of structural  analyses are 

likely  to  be  different. The  effectiveness of these  algorithms  may  be 

very  much a  function of the  type of nonlinearity,  geometric  or  material, 

and  also  whether a  static  or  a  dynamic  problem is  being  considered. 

We have, in this study, examined a host of unconstrained  minimization 

algorithms  with a view of determining  their  effectiveness  for  solving 

static or dynamic  structural  problems  involving  either (i) geometric, 

(ii) materia1,or (iii) a  combination of geometric and  material  nonlinear- 

ities. 

2. Classification of Algorithms 

In the  realm of mathematical  programming, t'he algorithms used  for 

unconstrained  minimization  can  be  broadly  classified  into  three  distinct 

classes  stemming  from the level  of  computational  sophistication: (i) 

the  zeroth  order  requiring  only  function  evaluations: (ii) the  first 

order  requiring  evaluation of the  gradient as well  as the  function and 

(iii) the  second  order  requiring, in addition,  a  variable  metric 

related  to  the  curvatures of the function.  Only  the  techniques  belong- 

ing to  the  latter  two  categories hav.e  been more  frequently used for 

structural  analysis,  apparently  because of their  higher  effectiveness in 
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comparison  with  zeroth  order  techniques.  The  minimization  algorithms 

of the  zeroth and first  order  have  very  modest  storage  requirements 

since at no  time  is  the  assembled  stiffness  matrix of the  structure 

generated.  For 1 inear  problems  with  analytic  derivatives  (derivatives 

not  evaluated  through  finite  differencing),  some of these  techniques  can 

be  nearly  as  efficient  as  the  conventional  stiffness  matrix  formulation 

coupled  with a Choleski  decomposition  technique. 

The  following  algorithms,  details  of  which  can be  found in Appendix A, 

were  examined  for  their  effectiveness in solving  static  and  dynamic 

structural  problems  involving  geometric  and/or  material  nonlinearities: 

1. Zeroth  Order  Algorithms 

a. Nelder  and  Mead's  Simplex  Method  [121 

b. Powell's  Conjugate  Direction  Method  [13] 

2. First  Order  Algorithms 

a. Method  of  Steepest  Descent 

b. Fletcher-Reeves'  Conjugate  Gradient  Algorithm [14] 

c. Jacobson-Oksman' s A1  gori  thm [ 151 

3.  Second  Order  Algorithms 

a. Davidon's  Variance  Algorithm [16] 

b. Davidon-Fletcher-Powell ' s  Variable  Metric  Algorithm  [17,18] 

c. Fletcher's  New  Variable  Metric  Algorithm [19] 

The  efficiency of any  given  algorithm  is  quantified by the  number 

of function  and  gradient  evaluations  (or  equivalent  function  evaluations) 

and by the  amount  of  total  CPU  time  required  to  solve a given  problem 

to  within a prescribed  degree of accuracy.  Previous  investigators  have 
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also  utilized  the  number of minimizations  as  a  criterion  for  efficiency. 

However,  it  is  felt that  this  alone  is not a meaningful  criterion  because 

the computational effort involved  in a  single  minimization of a given 

technique  may  be  significantly  different  from  that of another.  Thus,  the 

total number of minimizations  is  not  a  meaningful  measure of total 

computational  effort.  Both  analytic  and finite  difference  derivatives 

are used  with a  view  to  determining  the  sensitivity of these  algorithms 

to  inaccuracies in gradient  evaluations and  to  determine  the  compu- 

tational  efficiency  ensuing  from  the  use of an  analytic  gradient. 

Development of an  analytic  gradient  presents  no  insurmountable  problems 

when  only  geometric  nonlinearities  exist.  With  material  nonlinearities 

however,  the  picture  is  fundamentally  different  because  the  bookkeeping  effort 

increases  significantly.  The  details of the  calculation  of  analytic 

derivatives  for  nonlinear  structural  problems of the  type  considered 

herein  are  presented in reference [201. 

3 .  -~ Classification - of Problems and Their  Formulation 

The problems  to  be  analyzed  are  arranged  into five  different 

categories  stemming  from  the  type or degree of nonlinearity  and  from 

whether  the  problem  is  static or dynamic.  Four  categori 

variety were  chosen and  include  the  following: (i) the 

Figure 1,  restricted  to  mild  geometric  nonlinearities, 

(ii) the  rod-spring  problem,  Figure 2, which  is  geometri 

es of the  static 

elastica  problem, 

P/Pcr<0.4; 

cal ly highly 

nonlinear; (iii) an elastic-plastic  cantilever  beam  subjected to a tip 

bending moment,  Figure 3 ,  with  only  material  nonl  inearties  (deformations 

and rotations  constrained  to be  small  and geometrically 1 inear);  and 
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(iv) an  elastic-plastic  cantilever  beam  subjected  to  a  tip  bending  moment 

with  rotations  allowed  to  be  moderately  large. The fifth (v )  cate- 

gory  is  a  transient  problem:  an  impulsively  loaded  elastic-plastic 

clamped  beam,  Figure 4,  wherein  the  rotations are allowed  to  be  moderately 

large. The structural  response of each  system  as  predicted  in  this  study 

is  in excellent  agreement  with  that  presented by Huddleston [21] for  the 

elastica  problem; by Haisler,  Stricklin and Stebbins [22] for  the  rod- 

spring  problem;  and by Belytschko.and  Schoeberle [23] for  the  impulsively 

loaded  elastic-plastic  clamped  beam  problem. 

The  minimization  approach  as  applied  to  the  solution of transient 

nonlinear  structural  problems  consists of minimizing  a  potential  function 

associated  with  the  system  for  an  assumed  relationship  between  displace- 

ments  and  time. The solution  process  accommodates  static  response of 

massless  systems  and  transient  response of systems  wherein  some of the 

components  may  have zero masses  as  special  cases.  For  the  purposes  of 

this study, the  displacement-time  relation  for  each  generalized nodal 

variable of our  finite  element model  is  assumed  to  be of the  form [241 

C i 2 'i 3 
2 6 

Xei = ai + bi  (At) + - (At) + - (At) 

where Xei is  the  i-th  generalized  nodal  displacement at the end of 

the  time  step and ai,bi,ci and Bi are constants.  These  constants 

are  determined in terms of generalized  displacement, Xoi, velocity, 

'oi 3 

generalized  displacement, Xei, at the end of the  time  step.  The 

equation of motion  corresponding  to  the  i-th  degree of freedom  takes 

the  form 

. .. 
and accelerations, Xoi, at  the  beginning of the  time  step  and  the 
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where Mi, Fi and U  are  respectively,  the  mass,  exciting  force and 

strain  energy  corresponding  to  the  i-th  degree of freedom. The equilib- 

rium  equations, Eq. (2) for i=l ,... ,N for  a  system  with N degrees 

of freedom, can  be  regarded  as  the  stationary  conditions  for  the  function- 

al S 
id 

3 2 6 6 .  
s = i=l xei - [z xoi + (at) Xoi + 2yoi) Xei] Mi 

t ( 3 )  
- 

Fi I (to + A t )  
Xei)) +u+c 

where C is  an arbitrary  constant.  Because  the  masses, Mi, i=l , . . . , N  

are  positive  quantities and U is a positive  semi-definite  function  for 

most  structural  materials,  the  space S can  be  shown  to  be  convex. 

Equations ( 2 ) ,  for i=l,. .. , N  are  thus  necessary  conditions  for S to 

be a minimum. 

Once  the  assumption of the  displacement-time  relation is made,  the 

minimization  approach,  unlike  the  incremental  stiffness  approach,  solves 

the actual nonlinear  problem  within  a  given  load  or  time  step  without 

linearization. Consequently, iteration at  constant load  to  improve 

the  equilibrium or force imbalance at  the end of a load or time  step 

is not required. 

4. Discussion o f  Results 

The performance of the selected  unconstrained  minimization  algorithms 

will now be sumnarized  with  regard  to  their  effectiveness in predicting 



. , , . . . . . . . . . ". - 

nonlinear  structural  response. However, i n  order  to  sanction an inter- 

c lass  as well as an intra-class  assessment  of the zeroth, f i rs t  and 

second order  algorithms, a fac tor  which is a composite  of the number of 

function and gradient  evaluations was defined and termed the number of 

equivalent member energy  evaluations. The determination of this 

factor  depends on  how the  gradient i s  calculated.  The i - t h  component 

of the  gradient of S us ing  central   differences i s  given by 

S ( t ,  Xel , Xe2 . . . X . + AXei Xei+l . . . X  ) e1 eN 

axei 2 AXei 

where AXei i s  a small  change i n  the i - t h  component. In computing 

S i n  equation (4 ) ,  only  the  energies of the  affected members a re  

recomputed. Thus ,  i n  u s i n g  central   difference  operation, each compo- 

nent  of  the  gradient  vector  corresponding  to any one nodal degree of 

freedom involves a t  l ea s t  two member energy  evaluations, four  i f  the node is  

comnon to  two elements,  six i f  the node i s  common to  three  elements, 

and so on. For  an analytic  gradient,  however, the  gradient  calculation 

involves  only a single  function which is  s imilar  t o  the  function for the 

member energy  evaluation  (see  reference 20 f o r   d e t a i l s ) .  The i - t h  

component of  the  gradient  vector may  be writ ten  as 

as " au 1. 

- M i  Xei F i  + - 
axe i axe i 

8 
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evaluated as T 
m 

11 

k= 1 
‘k 

aw dVk’ 
m 
’r 
II 
k= 1 y-) dc (A) axei  k  dvk 

‘k 
or equivalently for one step incremental  loading or unloading 

‘k 
where W represents  the  strain  energy  density  and m is  the  number of 

members or elements  which has the  i-th  degree of freedom in  common. 

Thus, the  term - involves a volume  integral  which  is  very  similar 
to  that  required for  a  member  energy  evaluation.  Hence,  it  may  be 

”e i 

assumed  that  each  component of the  analytic  gradient  vector  involves 

approximately at  least  one  member  energy  evaluation,  two if the  node  is 

common  to  two elements,  three if the  node is  common  to  three  elements 

and so on. Consequently,  a  significant  reduction in the number  of 

equivalent  member  energy  evaluations  and in CPU time  should  be  realized 

if  analytic  gradients are used  instead of finite  difference  gradients. 

4.1 Results  Using  Finite  Difference  Gradients 

For  most  minimization  algorithms  using  finite  difference  approxi- 

mations for  the  gradient,  the  computational  effort  required  to  evaluate 

the  gradient  using  a  central  difference  operator  may  be  nearly  twice 

that  required for  either  a forward or backward  difference  operator. 

This  computational  advantage  is  partially  offset by the  fact  that  the 

accuracy of the  derivatives  obtained by utilizing the forward or back- 

ward  difference  operator is likely t o  be  poor. Our limited  studies 
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indicate  that  for  first  order  methods  considerable  savings in computa- 

tional  time may be  realized for  some problems  by  using  forward or back- 

ward  difference  derivatives.  It  is  tacitly  assumed  however  that for 

the  calculation of such  derivatives,  stepsizes  are  much  smaller  (appro- 

ximately  1/100th  to  1/1000th;  with the  minimum  being  dictated  by  the 

precision  of  the  computer)  than  the  stepsizes  used for central  difference 

derivatives. The  same computational  advantage  may  not  be  realized  with 

second  order  methods  utilizing  a  variable  metric  which  is  updated 

recursively  using  current  function  and  gradient  information  and  converges 

to  the  inverse of the Hessian  matrix of the functional S. In this 

case, the inaccuracies  in  the  variable  metric  resulting  from  forward 

or backward  difference  derivatives  can  retard  the  convergence  rate 

substantially, thus  offsetting the  savings  accrued  from  the  relatively 

cheaper  gradient  evaluations.  For  second  order  methods,  the  only  time 

forward or backward  difference  derivatives  appear  to  be  competitive  with 

central  difference  derivatives  is  when  the  initial  variable  metric, 

-0' H is set equal  to the  identity  matric, - I, at  the beginning  of  each 
load  or time  step of a  nonlinear  analysis and is  not  carried  forward 

as the  initial  variable  metric of the  next  step.  Our  limited  experi- 

ments  using  forward  and  backward  difference  derivatives  have  revealed 

that  the  performance of most  minimization  algorithms  employing  such 

derivatives is unpredictable  and  quite  sensitive  to  the  type  and 

degree of nonlinearity in question, even  more so than  with  central 

difference  derivatives.  Hence,  based  on  this study, it  is  recommended 

that  their  use  should  be  avoided  whenever  possible. 

10 

- " . . . . . 



The computational  effort  expended by the various  minimization 

algorithms using either  analytic  or  central  difference  gradients  is  documented 

in the  following  tables by three  weighting  factors  normalized  to  their 

respective  minimum  value;  such  that,  the  most  efficient  algorithm will 

have  weighting  factors of 1.0. The first of these  corresponds  to 

the  number o f  minimizations,  the  second  to  the  number  of  equivalent 

member  energy  evaluations  and  the  third  to  the  elapsed CPU time.  For 

the  results  reported in Tables 1 through 5, all gradients  were  evaluated  using 

a central  difference  operator. 

The  effects of geometric  nonlinearities  on  the  computational  effort 

required by the  various  algorithms  can  be  observed in Table 1 for  a 

mildly  nonl  inear  example  and  in Table '2 for a highly  nonlinear  example 

While  none of the first  order  methods  considered  were  competitive, 

Powell's  conjugate  direction  method  presents  stiff  competition  to  sec- 

ond  order  methods  which set the initial  variable  metric  to  the  identity 

matrix !$ = - I at the  beginning of each  load  step.  for  the  degree 

of geometric  nonlinearity  considered, Davidon-Fletcher-Powell's method 

using  an  updated  variable  metric (I& = 1_ only  initially)  is  more 

efficient. Also, the  computational  advantage  of  second  order  methods 

which  update  the  variable  metric  recursively  over  those  which  do not, 

can  be  readily  seen  in Table 1. The extremely  poor  performance  of 

some of the  methods in Table 1 suggest  that  they hold little  promise 

for  other  cases of nonlinearities. 

The effects  of  material  nonlinearities  arising  from  loading  and 

unloading while in  the  inelastic  range  can  be  seen  in Table 3 .  For 
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this  study,  a  linear  elastic  response is  considered  for  the  first  two 

loading  steps  followed  by  two  loading  steps  in  the  inelastic range 

and a final  unloading step in the  elastic  range.  For the linear 

elastic  portion where  equation ( 3 )  has a  quadratic forb all methods 

performed at least  marginally  well  with  the  exception of Nelder-Mead's 

method  and  the  method of steepest  descent  which  performed  poorly. An 

unexpected result  came  from the fact  that  the  Jacobson-Oksman  algorithm 

had to be  restarted  repeatedly  to ensure  linear  independence of the 

search  directions.  This  is  reported  to  have  never  been  necessary by 

Jacobson and  Oksman  [15] for  their  test  functions.  Although  initially 

superior  for  the 1 inear  elastic steps, Davidon-Fletcher-Powell ' s  method 

is  less  competitive  than  Powell's  conjugate  direction method, (a 

zeroth  order  method)  for  inelastic  loading.  Fletcher's  method  is 

initially  very  sluggish  in finding a  solution  but  is  found  to  be  com- 

petive  after  the  first  load  step  and  superior  during  inelastic  loading. 

However  the  superiority of Davidon-Fletcher-Powell's method  is  regained 

when  unloading  occurs  and  overall  it  is  again  the  more  efficient  method. 

This  is  as  expected  in  that  methods,  like Davidon-Fletcher-Powell's 

method, which  utilize  the  property of quadratic  termination will be 

more  efficient  for  problems  involving  quadratic  functionals  than 

methods  like  Fletcher's  method  which  discard  this  property. 

Table 4 summarizes  the  computational  effort  expended in solving 

a problem  with a high degree of geometric  and  material  nonlinearities. 

Only  Fletcher's  method  was  successful  in  solving  this  problem  within 

a  reasonable  amount of computer  time  for  the  specified load steps  as 
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Davidon-Fletcher-Powell's method f a i l ed   t o  converge dur ing  the f irst  

s tep i n  the  inelastic  range. The reason f o r  this f a i l u r e   t o  converge 

could be a t t r ibu ted  t o  either  taking  too  large of  a load  step or t o  

inaccuracies i n  the  variable  metric  result ing from the use  of central  

difference  gradients. 

Table 5 represents  the  results from a t ransient  problem wherein, 

t o  a moderate  degree, both geometric and material   nonlinearit ies were 

included. Again overall   superiority was demonstrated by Fletcher. 's 

method using an updated variable  metric. 

4 .2  Results Using Analytic  Gradients 

The above resul ts ,   together  w i t h  our  experiments w i t h  o the r   f i n i t e  

difference  operators,   clearly  indicate t h a t  a l l   f i r s t  and second order 

algorithms  are  cri t ically  influenced by the  accuracy of the  gradient 

vector. This leads  very  naturally  to  the  consideration of an analyt- 

ically  derived  gradient  vector and of i t s   e f fec t iveness ,  Ihe per- 

formance of t h e   f i r s t  and second order methods using  analytic  gradients 

i s  reported i n  Tables 6 t h r o u g h  8. 

- 

The ef fec ts  of  geometric  nonlinearities on the  computational 

effort   required can be observed i n  Table 6 fo r  a mildly  nonlinear prob- 

lem  and i n  Table 7 f o r  a highly  nonlinear problem.  These r e su l t s  

again  indicate  the  superior performance  of the second order methods. 

A1 so ,  as  the  degree of  geometric  nonlinearity  increases  or i n  other 

words a s  Eq. ( 3 )  becomes  inore nonquadratic,  the  superiority of Fletcher 's  

method over Davidon-Fletcher-Powell's method  becomes  more and more 

evident. I t  should  also be noted that  Fletcher-Reeves' method u s i n g  

13 



analytic  gradients was able   to  converge f o r   a l l  load steps considered 

whereas u s i n g  central   difference  gradients,  i t  was not. 

The e f fec ts  of material   nonlinearit ies  are  reported i n  Table 8. 

For this study, two e l a s t i c  and two inelastic  loading steps a re  made. 

For the   l inear   e las t ic   por t ion ,   the   resu l t s   cor re la te  well w i t h  those 

reported i n  Table 3 .  However, for  inelastic  loading,  Davidon-Fletcher- 

Powell's method maintained i t s  superiority  over  Fletcher 's  method. 

This i s  qui te   interest ing i n  t ha t  a def in i te  change i n  performance i s  

observed from that  reported i n  table  3 .  

The r e l a t ive  performance of the methods us ing  central   difference and 

ana ly t ic   g rad ien ts   i s  documented i n  Tables 9-1 1 .  Analytically  derived 

gradients markedly improve the performance  of t h e   f i r s t  and second order 

methods w i t h  the most impressive improvement occurring when only material 

nonlinearities  are  considered,  Table 11.  I t   i s  t o  be expected t h a t  

as  the number of  i ne l a s t i c  members increases ,   the   re la t ive performance 

o f  any f i rs t  o r  second order  algorithm  utilizing  analytic  gradients will  

continue t o  improve. 

5. Concl  us i ons 

The performance  of the  selected  unconstrained minimizat ion 

rithms has been summarized w i t h  regards   to   their   effect iveness  

i n g  nonlinear  structural  response. Based on the  data  reported, 

algo- 

i n  pred 

Powel 1 

i c t -  

' s  

conjugate  direction method i s  the  only  zeroth  order method  which  demon- 

s t ra ted  good performance, par t icu lar ly  when only material   nonlinearit ies 

were considered. None of t he   f i r s t   o rde r  methods considered were competi- 

t i v e  and i n  general ,   their  use i s  n o t  recommended for  nonlinear  structural  

analysis.  Despite  inaccuracies i n  the  variable  metric due t o  central  

14 



difference  derivatives,  the  second  order  method  are  the  more  efficient  algorithms, 

primarily  because  they  exploit  the  curvature  related  information of the 

function.  Davidon's  variance  algorithm  is  not  recommended  for  general 

structural  analysis  because of  its  critical  dependence  on  three  user 

supplied  parameters.  When  mild  geometric  or  material  nonlinearities 

are  considered  separately, Davidon-Fletcher-Powell's method  is found 

to  be  more  cost-effective  on  an  overall  basis  over  the  range of load 

or  time  steps  considered  herein.  However,  it  is  found  that  overall 

Fletcher's  method  surpasses  Davidon-Fletcher-Powell ' s  method  when 

geometric  and  material  nonlinearities  are  combined for both  static 

and  dynamic  problems.  Furthermore,  the  results  indicate  that  with  time 

and  an  increasing  degree of  geometric  nonlinearity,  Fletcher's  method 

becomes  increasingly  cost-effective. 

The  sensitivity o f  the  first and  second  order  algorithms  to 

numerical  differentiation  and  the  computational  efficacy  ensuing  from 

the  use  of  analytic  gradients  was  also  determined. The use of  analytic 

gradients  results in a  substantial  savings in computational  effort. 

This  saving  is  the  result of  not  only  a  cheaper  cpadient  evaluation  but 

in most  cases,  a  faster  convergence  to  the  solution  because of the 

higher  accuracy of all  computed  quantities. 

Therefore,  the  following  recommendations  can be  made.  For  general 

nonlinear  structural  analysis,  Fletcher's  new  variable  metric  method 

using  an  updated  variable  metric  and, if possible,  analytic  gradients  is 

the  best  minimization  algorithm  of  those  considered  herein.  Since  Fletcher's 

method  is  initially slow in converging  to  a  solution,  it  is  recommended  that 

15 



t i a l  var 

and only 

Powel 1 I s 

further studies centered 

iable  metric  are 

one type of non 

method us ing  an 

needed. I f  

l i nea r i ty  i s  

updated var 

around  a more appropriate  choice  for  the i n i -  

the  degree o f  nonlinearity is  mi ld  

considered,  Davidon-Fletcher- 

iable  metric  and,  if  possible,  analy- 

t i c   g rad ien ts  i s  preferred,   If   analytic  gradients  are  unavailable,  

then  central  difference  gradients  should be used. The use of e i t he r  

forward o r  backward difference should be avoided. 
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t ’  

Eelas = 1 . 9 5 8 ~ 1 0 ~ ~  Pa 

A = 5.0~10 m 

I = 1.042~10 m 

-5 2 

-10 4 
YY 

e / L  = 0.01 

L = 1.0m 

P = 2.013~10 2 N cr  

Figure I. Elastica Problem (10 e.lements,  30 d e g r e e s  of freedom). 
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AE = 4 . 4 5 ~ 1 0  N 7 

L = 2.54m 

6 = 2.54cm 

AP = 4.45N 

k = 1050N/m 
s 

Figure  2. Rod-Spring Problem ( 5  elements, 12  d e g r e e s  of freedom.)  
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tY 

Eelas 

Eplas  

= 1 . 9 5 8 ~ 1 0 ~ ~  Pa 

= 3 . 7 5 1 ~ 1 0  Pa 8 

0 = 5 . 5 8 5 ~ 1 0  Pa 8 
YP 

d = l.Ocm 

t = 0.5cm 

A = 5 . 0 ~ 1 0  m -5 2 

L = 1.0m 

I = 4 . 1 6 7 ~ 1 0  m -10 4 
YY 

M = 46.542 J 
YP 

F i g u r e 3 ,  Elastic-Plastic  Cantilever  Beam 
(4  elements, 1 2  degrees of  freedom, 
s o l i d  ?ectangular c t o s s  section). 
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" 

I 

L1 = 127mm 

L2 = 51mm 

Vo = 51.18m/sec.  

p = 7870kg/m 3 

= 1 . 9 5 8 ~ 1 0  Pa 11 
E e l a s  

= 3 . 7 5 1 ~ 1 0  Pa 8 
Eplas  

u = 5 . 5 8 5 ~ 1 0  Pa 8 
YP 

d = 3.18mm 

t = 25.40mm 

Figure4 . .   Impuls ive ly  Loaded Elastic-Plastic Clamped 
Beam (10  e lements  over half  the  span,  28 
degrees   o f  f'reedom, s o l i d   r e c t a n g u l a r  Oross 
s e c t i o n ) .  
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Tab1 e 1 .- Performance  Data f o r   t h e   E l a s t i c a   P r o b l e m  
Us ing   Cent ra l   D i f fe rence  Grad ien ts .  

MINIMIZATION APPLIED AXIAL LOAD, P/PCr 
ALGORITHM 0.1  0.2 0.3 0.4 
Ne1 der-  Mead ' s - - - 
Simp1  ex 
Method 
Powel 1 I s  Conjugate 
D i r e c t i o n  
Met  hod 
Fletcher-Reeves'  Method 
w i t h   r e s t a r t s   a f t e r   t h e  
f i r s t  N+2 i t e r a t i o n s   o n l y .  
Method o f  
Steepest 
Descent 

Jacobson-Oksman's 
Met  hod 

Davidon's  Variance 
Method w i t h  
H =I 
Davidon's  Variance 
Method w i t h  I-@L 
where K=O. 1 

F l e t c h e r ' s  Method 
w i t h  h=l_ always 

-0- 

7,91 7 .OO 6.14 
36.78 32.12 28.13 
27.80 25.61 21.82 
24.45 45,83* 
31 ,13 55.51 
23.40 42.06 - 

- 
- 

(m) 2.54 17.91 17.58** 
(e)  1.82 22.78 20.90 - 
(t) 1.47 17.15 16.72 - 

(t) 1.45 

(m) 3.39* 
( e )  2.74 
(t) 1.51 

(m) 3.22 
( e )  1.51 
( t )  1.46 

33.09 
69.17 
55.03 

17.27 
16 .OO 
13.42 

28.58* - 
60.21 - 
50.39 - 

- - - 

26.00* - 
23.41 - 
20.61 - 

(m) 3.78 40.73 31.08 28.14 
( e )  1.77 37.50 28.12 25.56 
( t )  . 1  -59 30.64 23.45 20.62 

F1 e tcher  ' s Method (m) 3.78  1 .oo 
w i t h  H =I o n l y  (e)  1.79  1 .oo 
i n i  t idly. ( t )  1.79  1 .oo 
Davidon-Fletcher-  (m) 1.53  9.18 
Powel l ' s  Method w i t h  (e)  1.00  11.82 
-0" H -I always (t) 1.04  11.44 

Davidon-Fletcher-  (m) 1  -53  1.64 
Powel 1 ' s  Method w i t h   ( e )  1 .OO 1.91 
-0- H =I o n l y   i n i t i a l l y .  (t) 1-00  1.79 

*Fa i led   to   converge  fo r   g iven   load   inc rement  

**Converged bu t   ana lys is   te rmina ted  

2 .oo 
1.87 
1.72 

13.58 
17.04 
15.49 

1 .oo 
1 .oo 
1 .oo 

2 .oo 
1.85 
1.72 

11.21 
14.21 
12.84 

1 .oo 
1 .oo 
1 .oo 

(m). . .We igh t ing   f ac to r   f o r   t he  number o f   m i n i m i z a t i o n s ,  
( e ) ,  . . W e i q h t i n q   f a c t o r   f o r   t h e  number o f   e a u i v a l e n t  member energy  evaluat ions.  
(t). . ,We igh t ing   f ac to r   f o r   t he   e lapsed  CPU time.. 
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Table 2.- Performance  Data  for  the  Rod-Spring  Problem 
Using  Central  Difference  Gradients. 

MINIMIZATION RESULTS  FROM  THIRTY (30) 
ALGORITHM LOAD  STEPS 

Powel 1 I s  (m) 3.08 
Conjugate (e)  7.02 
Method (t)  5.40 

F1 etcher I s Method  with  (m)  1.57 
H =I only  initially  (e) 1.47 
4 -  (t) 1.34 

" 

Davidon-Fletcher-Powell's 
Method  with %=I- only 
initially 

(m) 1 .OO 
(e) 1.00 
(t) 1.00 

(m) ... .Weighting  factor  for  the  number  of  minimizations. 
(e). . .Weighting factor  for  the  number  of  equivalent  member  energy 
(t) ... Weighting  factor  for  the  elapsed  CPU  time, 

evaluations. 
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Table 3 . -  Performance  Data f o r  a n   E l a s t i c - P l a s t i c  
Can t i l eve r  Beam Sub jec ted   to   a   T ip   Bend ing  
Moment w i th   Smal l  and Geomet r ica l l y   L inear  
Deformat ions  and  Rotat ions  Using  Central  
Di f ference  Gradients .  

MINIMIZATION 
ALGORITHM 0,215 ' 1.074 1'.289 1,397 ' 1.289 

APPLIED TIP BENDING  MOMENT, M/Myp 

Ne1 der-Mead I s 
Simp1  ex 
Method 

(m) 360.82* - - - - 
(e )  18.73 - - - - 
( t )  13.63 - - - - 

Powel 1 I s  Conjugate ( m )  1.00 3.00 1 ,oo 1 .oo 2.44 
D i r e c t i o n  (e)  1.83 10.59 2.16 1.74 5.75 
Method ( t )  1.44 4.25 1.86 1.70 4.97 

F1 etcher-Reeves I method ( m )  2.18 6.25  10.31* - - 
w i t h   r e s t a r t s   a f t e r   t h e  (e)  1 - 2 2  7.06  9,54 
f i r s t  N+2 i t e r a t i o n s   o n l y  (t) 1.00 2.99  10.84 - - 

- 

- - 

Method o f  
Steepest  Descent 

- 
Davidon's  Variance (m) 8.18 26.25 14.06* c - 
Method w i t h  (e )  3.51 22.57 9.72 
fie = KI - where K=O. 1 ( t )  2.40 8.53 8.86 - - 

F1 e t c h e r ' s  Method (m) 9.45 1.75 1.17 1.44 2.67 
w i t h  H = I   o n l y  (e )  4.28 2.13 1 .oo 1 .oo 3.09 
i n i   t i 8 1 7  ( t )  3.20 1.34 1 .oo 1 .oo 2.82 

Davidon-Fletcher-Powell's (m) 1.55 1 .oo 2.29 3.52 1 .oo 
Method w i t h  %=l_ o n l y  (e)  1.00 1 .oo 2.09 2.67 1 .oo 
i n i t i a l l y  ( t )  1.02 1 .oo 2.49 2.65 1 .oo 

- - 

* F a i l e d   t o  Converge  for  given  load  increment 

(m) .   . .Weigh t ing   fac to r   fo r   the  number of min imiza t ions .  
(e ) .  . . w e i g h t i n g   f a c t o r   f o r   t h e  number o f   e q u i v a l e n t  member energy  evaluat ions.  
( t ) . . .Weigh t ing   fac to r   fo r   the   e lapsed CPU t ime. 
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Table  4.-  Performance Data f o r  an Elast ic-Plast ic  
Cantilever Beam Subjected t o  a T i p  Bending 
Moment w i t h  Moderately  Large  Rotations 
Using Central  Difference  Gradients, 

MINIMIZATION 
ALGORITHM 

APPLIED TIP BENDING MOMENT, M/Myp - 
0.215  1.074 1,289  1.397  1.289 

Powell Is Conjugate (m) 1 .OO 2,48** 
Direction (e)  1.18 5.62 
Method ( t)  1.10 5.14 

F1 etcher-Reeves ' method ( m )  4.91 14,33** 
w i t h  r e s t a r t s   a f t e r  the (e)  3.03 16.21 
f i r s t  N+2 i terations  only ( t )  2.75 14.89 

Davidon's  Variance (m)17.24* - 
Method w i t h  (e)  7.21 - 
H =KI where ~ = 0 . 1  ( t )  6.78 - "0- 

F1 e tcher ' s  Method ( m )  2.28 1.48 1.00 1.00 1 .oo 
w i t h  H =I  only (e )  1 .OO 1.35 1.00 1.00 1 .oo 
i n i  t i 2 f l y  ( t )  1.00 1.30 1 .oo 1 .oo 1 .oo 
Davidon-F1 etcher-Powel 1 I s  ( m )  10.47 1 .oo 2.34* 
Method w i t h  &=L only ( e )  6.05 1 .oo 2,83 
i n i t i a l l y  ( t )  6.02 1 .oo 3.12 

*Failed t o  converge fo r  given load  increment 

**Converged b u t  analysis  terminated 

( m ) ,  . .Weighting fac tor   for  the number of minimizations. 
(e) .  . ,Weighting fac tor   for   the  number of equivalent member energy 

( t ) .  . .IWeighting fac tor  f o r  the elapsed CPU time. 
evaluations, 
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Table 5.- Performance Data f o r  an Impulsively 
Loaded Elast ic-Plast ic  Clamped 
Beam w i t h  Moderately  Large 
Rotations Using Central  Difference 
Gradients. 

MINIMIZATION 
ALGORITHM 

TIME (IN GROUPS OF ;EN TIME  STEPS; 
- t,=O .O , At=l 0' SECONDS) - I1  I11 IV 

Nelder-Mead's 
Simp1 ex 
Method 

Powel 1 I s Conjugate (m) 1.00 1.26.F - - 
Direction (e)  2.55 5.92 - - 
Met hod ( t )  1.77 4.05 - - 
F1 etcher-Reeves I Method (m) 5.4.1 10,37? - - 
w i t h  r e s t a r t s   a f t e r  the ( e )  2.93 8.15 - - 
f i r s t  N+2 i terat ions  only ( t )  2.13 7.10 - - 

Method of (m) 21.89t - - - 
Steepest (e )  11.75 - - - 
Descent ( t )  7.12 c - - 

Davidon's  Variance (m) 15.07** - - - 
Method w i t h  ~ = K I  (e)  6.63 - - - 
where ~ = 0 . 1  (t) 4.15 - - - 

F1 e tcher ' s  Method w i t h  
H =I   on ly   in i t ia l ly  

(m) 2.52 1 .oo 1 .oo 1 .oo 
(e )  1.53 1 .oo 1 .oo 1 .oo 

-0- ( t )  1.07 1 .oo 1 .oo 1 .oo 
Davidon-Fletcher- (m) 2.00 2.39 3.46 2.02 
Powel 1 I s  Method w i t h  (e)  1.00 2.08 3.26 1.96 
b=I- only   in i t ia l   ly  ( t )  1.00 1.91 2.65 1.69 

*Failed t o  converge ( fo r  g iven  time step) a t   t = 6 . 0 ~ 1 0 - ~  

**Failed t o  converge ( fo r  given time S t e p )  a t  t=9.0X10-6 

-)Converged b u t  analysis  terminated 

( m ) ,  . ,Weighting f ac to r   fo r  the number of  minimizations, 
( e ) .  . .Weighting fac tor   for   the  number of  equivalent member energy 

( t )  ...W eight ing  factor   for  the elapsed Cpu time. 
evaluati.ons. 



Tab le  6 -  - Performance Data f o r   t h e   E l a s t i c a  
Problem  Using  Analyt ic   Gradients  

MINIMIZATION 
ALGORITHM 0.1  0 .2  0.3 0.4 

APPLIED AXIAL LOAD, P/PCr 

Fle tcher -Reeves '  (m> 2.27  16.82  15.06  22.54 
Method w i t h  restarts (e)  2.80  34.69  20.94  32.31 
a f t e r   t h e  f i r s t  N+2 (t) 1.99  17.96  12.13  16.23 
i t e r a t i o n s   o n l y  

- 

F l e t c h e r ' s  Method (m> 2.97 1 .oo 1 . 4 1  2.15 
wi th  H = I on ly   ( e>   1 .35  1.00 1 .oo 1 . 6 3  
initiafly 

- 
(t> 1.36 1 .oo 1.00 1.30 

Davidon-Fletcher- (m) 1 .oo 1.27 1 .oo 1 .oo 
Powel l ' s  Method wi th  ( e )   1 .00  1.81 1.22 1 .oo 
H = I o n l y   i n i t i a l l y  ( t )  1.00 1.67 1 . 1 6  1 .oo 
-0 - 

(m) ... W e i g h t i n g   f a c t o r   f o r   t h e  number of min imiza t ions .  
( e ) .  . . Weigh t ing   f ac to r .   f o r   t he  number  of e q u i v a l e n t  member energy 

( t )  ... Weigh t ing   f ac to r   fo r   t he  elapsed CPU time. 
e v a l u a t i o n s .  
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Tab le  7.- 

MINIMIZATION 

Performance Data f o r   a n  E las t ic  
C a n t i l e v e r  Beam S u b j e c t e d   t o  a 
Tip  Bending Moment wi th  
Moderately  Large  Rotat ions 
Using   Analy t ic   Gradien ts  

APPLIED TIP BENDING  MOMENT, M/% 
ALGORITHM 0.215 

" 

1.074 

F l e t c h e r ' s  Method (m> 1.00 1 . 2 3  
w i t h  H = I on ly  ( e> 1 .00  1.00 
i n i t i Z P l y  

- 
( t >  1.00 1.00 

Davidon-Fletcher- (m> 3 . 6 6  
Powell's Method ( e )  7.33 
w i t h  H = I on ly  
i n i t i a P l y  

- 6.64 

1.00 
1 . 2 4  
1.27 

(m) ... d e i g h t i n g   f a c t o r  f o r  t he  number  of min imiza t ions .  
( e )  ... Weigh t ing   f ac to r   fo r   t he  number  of e q u i v a l e n t  member energy 

eva lua t ions .  
e (  t )  ... Weigh t ing   f ac to r   fo r   t he  elapsed CPU time. 
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Table 8.- Performance  Data  for  an  Elastic-Plastic 
Cantilever  Bean  Subjected to a T i p  
Bending  Moment  with Small and Geo- 
metrically  Linear  Deformations  and 
Rotations Using Analytic  Gradients. 

MINIMIZATION 
ALGORITHM  0.215 1 . 0 7 4  1.289  1.397 

APPLIED TIP BENDING  MOMENT, M/% 

Fletcher-Reeves' (m> 2.83 19.00 150.20* " 

Method  with  restart (4 2.12 21.14  139.81 " 

after  the  first  N+2 (t) 1.42  3.19  104.15 " 

iterations  only - 

Fletcher's  Method (m> a .67 3.50  1.20 1.00 
with H = I only (e) 3 . 4 3  2.29   3 .79   4 .75  
initiaPly 

- 
(t) 2.46  1.25  2.38  2.12 

Davidon-Fletcher- (m> 1 .oo 1.00 1 .oo 2.00 
Powell's  Method  with (e) 1.00 1 .oo 1 :oo 1.00 
H = I only  initially (t) 1 .oo 1.00 1.00 1 .oo 
-0 - 

9C 
Failed  to  converge for given load increment. 

(m) . . . Weighting  factor  for  the  number  of  minimizations. 
(e) ... Weighting  factor  for  the  number  of  equivalent  member  energy 
(t) ... Veighting  factor for the  elapsed  CPU  time. 

evaluations. 

31 



Table 9.- Rat io   o f   t he   Computa t iona l   E f fo r t  
w i t h   A n a l y t i c   G r a d i e n t s   t o   T h a t  
of C e n t r a l   D i f f e r e n c e   G r a d i e n t s  
f o r   t h e  E las t ica  Problem. 

MINIMIZATION APPLIED AXIAL LOAD, p/p,, 

ALGORITHM 0.1 0.3 0.3 0.4 

Fletcher-Reeves '  (m> 0.919  0.688 0.952 1.089 
Method wi th  res tar ts  (e)  0.518  0.359  0.452  0.495 
a f t e r   t h e  f i r s t  N+2 (t)  0.467  0.322  0.404  0.456 
i t e r a t i o n s   o n l y  

* * 

F l e t c h e r ' s  Method (m) 1.000 1.000 1.000 1.000 
w i t h  H = I only  (e)  0.320  0.323  0.323  0.323 
i n i t i i P l y  

- 
( t )   0 .347  0 .419  0 .417 G .384 

Davidon-Fletcher- (d 0.833 0.778 1 .417  0.929 
P o w e l l ' s  Method wi th  (e)  0.424 0.306 0.736 0.367 
H = I o n l y   i n i t i a l l y  (t) 0.460 0.390 0.834 0.512 
-0 - 

~. 

* 
Convergence was n o t   a c h i e v e d   f o r   t h e   t h i r d   l o a d   s t e p   u s i n g   c e n t r a l  
d i f f e r e n c e   g r a d i e n t s ;   t h e r e f o r e ,   t h e   c e n t r a l   d i f f e r e n c e  r e s u l t s  of 
t he   s econd   l oad   s t ep  were u s e d   i n   c a l c u l a t i n g   t h i s   r a t i o .  

(m) . . . Ratio  of   the  number  of min imiza t ions .  
( e )  ... Ratio  of   the  number o f   equ iva len t  member ene rgy   eva lua t ions .  
( t )  ... Rat io   o f   the   e lpased  CPU t i m e .  
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T a b l e   R a t i o  of the   Computa t iona l   E f fo r t  
w i t h   A n a l y t i c   G r a d i e n t s   t o   T h a t  
o f   Cen t r a l   D i f f e rence   Grad ien t s  
f o r   a n  E las t ic  Cantilever Beam 
S u b j e c t e d   t o  a Tip  Bending Moment 
wi th   Modera t e ly   La rge   Ro ta t ions .  

MINIMIZATION APPLIED TIP BENDING MOMENT, M/M* 
ALGORITHM 0.215 1 .074  

F l e t c h e r ' s  Method (d 0.992 
with H = I o n l y  ( e )  0.345 
i n i   t G P l y  

- 
( t )  0.355 

0.939 
0.323 
0.331 

Davidon-Fletcher- (m) 0.789 1.136 
Powell  ' s Method ( 4  0.419 0.539 
w i t h  H = I o n l y  ( t)  0.391 0.546 
i n i t i a l y  

- 
- . " " . . - - . - "" 

(m) ... R a t i o   o f   t h e  number  of  minimizations. 
( e )  ... R a t i o  of t h e  number of e q u i v a l e n t  member ene rgy   eva lua t ions .  
( t )  ... R a t i o  of t h e  elapsed CPU time. 
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Table l l r  

MINIMIZATION 

Ratio of the  Computational  Effort  with 
Analytic  Gradients to That  of  Central 
Difference  Gradients  for  an  Elastic- 
Plastic  Cantilever  Beam  Subjected to 
a  Tip Bending  Moment  with  Small  and 
Geometrically  Linear  Deformations 
and  Rotations. 

APPLIED  TIP  BENDING  MOMENT, M/% 
ALGORITHM 0.215 1 .074  1.289  1.397 

Fletcher-Reeves' ( m> 1.417 1.520 " " 

Method  with  restart (e> 0.741  0.776 " " 

after  the  first N+2 (t) 0.789  0.786 " " 

iterations  only 

* 

Fletcher's  Method  (m> 1.000 1.000 0.146  0.026 
with H = I (e>  0.342  0.278  0.239 0.144 
initiaihy 

- 
(t) 0.428  0.686 0.164 0.102 

Davidon-Fle  tche  r- (m> 0.706  0.500 0.063 0.021 
Powell's  Method  with ( e )  0.425  0.259  0.030 0.011 
H = I only (t> 0.548  0.737  0.028 0.018 
initially -0 

* 
Failed  to  converge  using  both  analytic  and  central  difference 
gradients f o r  given  load  increment. 

(m) ... Ratio  of  the  number  of  minimizations. 
(e). .. Ratio of the number of  equivalent  member  energy  evaluations. 
(t) . . . Ratio  of the elapsed CPU time. 
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7. APPENDIX 

UNCONSTRAINED  MINIMIZATION  ALGORITHMS 

A.l Introduction 

The  majority  of  the  unconstrained  minimization  algorithms  con- 

sidered  in  this  study  hypothesize  that  the  function  to  be  minimized 

has  a  quadratic  form.  The  rationale o f  this  hypothesis  is  revealed 

by examining  the  Taylor  series  expansion  of  a  general  function  of 

N variables f(x) - about  its  minimum  point s. That  is, 

+ higher  order  terms 

or in vector  form 

+ higher  order  terms (A.2) 

Since  at  the  minimum  point $,.the gradient  vanishes  and  the  term 

(x - $1 approaches  zero,  the  higher  order  terms  become  relatively 

insignificant  thereby  causing  the  Taylor  series  expansion  of f(E) to 

be  dominated by the  constant,  linear and  quadratic  terms in the 
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proximity of the  minimum;  This  suggests  that in the  neighborhood of 

the minimum, many  general  functions  can  be  approximately  represented by 

a quadratic. The  function to  be  minimized  in  this study is Eq. (3). 

A prevalent  feature of the  techniques  considered  is  the  replace- 

ment of an  N-dimensional  minimization  problem  with a  sequence of one- 

dimensional or linear  minimizations  along  the line. 

%+l = % + a d +  

such  that f(x++l ) becomes a  function of a alone  when  the  variables 

-k x and  the  search  direction ci+ are both  known. 

The method  utilized  for  the  linear  minimization  depends  on  the 

computational  sophistication of the  particular  algorithm  invoked. 

If  gradient  information  is  available,  Davidon's  cubic  interpolation 

method [26, 27, 281  is employed; if not,  Powell's  quadratic interpolation 

method [ 13 , 27 , 281 is  engaged.  Powel 1 ' s  method  finds  the  minimum  of 

a  quadratic  which  is  described by the  values of the  function  at  three 

points  on  the 1 ine  specified by Eq. (A.3).  On  the other  hand, 

Davidon's  method  minimizes  a  cubic  which  is  defined by the  values of 

the  function  and  its  directional  derivative at two  points  along  the 

line  given by Eq. (A.3). Thus,  Davidon's  formulae  are  more  elaborate 

and time  consuming  than  those of Powell  but  Davidon's  method  ordinarily 

locates  the  minimum  along  the  line in fewer  iterdtions [27]. 

Each of the  techniques  previously  listed will now  be  characterized 

with  the  steps of their  algorithms  being  omitted.  The  details of the 

algorithms  are  available in the  appropriate  literature  cited. 
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A. 2 Nelder-Mead ' s  Simplex  Method 

In  using the  simplex  method  to  minimize  a  function of N variables, 

the function  is first evaluated at N + 1 mutually  equidistant  points 

in the  space o f  the N variables.  These  points  are  called  the  vertices 

of a  regular  simplex  which in  two dimensions  corresponds to  an equi- 

lateral  triangle  and  in  three  dimensions  to a  regular  tetrahedron. 

This direct search  technique  using  regular  simplices  was  devised by 

Himsworth,  Spendley and Hext [25] .  Nelder-Meld's  simplex  method  [12] 

represents an extension of their  work  wherein  the  regularity of the 

simplex is  abandoned. Also, additional  flexibility  for  adaptation of 

the  simplex  to  the local  geometry of the  surface is  incorporated. The 

basic  operations of the  simplex  method  are  reflection,  expansion  and 

contraction. The vertex of the  simplex  with  the  highest  function 

value  is  replaced  by another  point  obtained  through  a  reflection of 

that  vertex.  Depending  on  the  value of the  function  at  this  new 

vertex,  another  reflection  may  be  required  or  the  simplex  may  expand 

or  contract. These  operations  are  repeated until the  simplex 

essentially  collapses  on  the  minimum. 

.For  each of these operations,  a corresponding  coefficient  has 

been  defined: a reflection  coefficient a ;  a  contraction  coefficient 

6; and, an  expansion  coefficient y. The values  assigned  to  each  of 

these  coefficients  are  not  fixed;  however,  Nelder and  Plead's 

recommendation  that  the  user  set a = 1 ,  6= 1/2  and y = 2 was 

incorporated in this  study.  These  values  correspond  to  a  simple 
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reflection,  halving when i n  d i f f i c u l t y  and doubl ing  when a useful 

direct ion is  located. 

One undesireable  feature of the  simplex method is  tha t  i t  requires 

a s ign i f icant  amount of  computer storage when N is  large. This is  

t rue  because the  coordinates of  N + 1 vertices  are  stored  throughout 

the  minimization  process. 

A.3 Powell's  Conjugate  Direction Method 

Another direct   search method i s   the   un ivar ia te  method  which seeks 

the minimum of  a function of N variables by changing one variable a t  

a time. The method of  conjugate   direct ions  [13]   is   essent ia l ly  a 

variation of the  univariate method wherein the  properties of  a 

quadratic  function  are  exploited.  Neglecting  the  higher  order  terms, 

E q .  (A.2)  i s  a quadratic  function w i t h  a  Hessian matr ix  - A ( i . e .  

" a 2 f  = - A ) .  Search direct ions cIl ,. . . . . , d # 0 w i t h  the  property -N 
aX:2  - 

T 

d .  A d .  = 0 ,  i # j I 
-1 - -J 

are  said t o  be conjugate or or thogonal  w i t h  respect t o  the  weighting 

matrix - A. Therefore,  if  these  direction  vectors  are  generated such 

t h a t  

-1  -1 -i-1 d .  = X .  - X 

Then i t  can be  shown [28, 291 t h a t  they remain - A-conjugate and a 

conjugate  direction has been defined. 

In this  technique, each iteration  begins w i t h  a linear  search 

along N linearly  independent  directions cll, c12, ..., d s t a r t i ng  a t  -N 
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the  best  known  approximation  to  the  location of the  minimum.  After 

an  initial  univariate  search  along  each of the  coordinate  directions, 

conjugate  directions  are  generated by making  each  iteration  define  a 

new  search  direction - d and  choosing cii, c13, ..., d d as  the  linearly 

independent  directions  for  the  next  iteration.  Applying  this  procedure 

to  a  positive  definite  quadratic  form,  all  search  directions  will  be 

mutually  conjugate  after N linear  minimizations  and  the  exact  minimum 

will  have  been  found.  However,  Powell  modified  his  basic  procedure 

because  on  occasions  it  may  choose  nearly  dependent  directions; 

particularly  when  minimizing  a  function of more  than  five  independent 

variables [ 2 7 ] .  To overcome  this, he allows  a  direction  other  than 

- dl to  be  discarded.  Therefore  the t i  search  directions  can  be  chosen 

so as  to  be  always  linearly  independent,  even  though, in some  cases, 

the  same [\I directions  are  used  for  two  successive  linear  minimizations. 

As a  consequence of this  modification,  one of the  mutually  conjugate 

directions  may  be  discarded,  thereby  requiring  more  than N linear 

minimizations  to  find  the  exact  minimum  of  a  quadratic. 

-w - 

A.4 Method of  Steepest  Descent 

The  method of steepest  descent,  first  proposed by Cauchy L301, 

is  perhaps  the  oldest  and  most  well  known  gradient  technique  for 

function  minimization.  It  is  based  on  moving in the  opposite  direction 

of  the  gradient  vector  for  minimization. No other  vector  can  locally 

reduce  the  function  value  as  much  since  the  gradient  vector  perpen- 

dicularly  cuts  adjacent  contours  of  the  function.  While  simple and 

stable,  this  method  often  converges  slowly  and in a  zig  zag fashion. 
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This is  because the  direction o f  steepest   descent and the  direct ion  to  

the minimum may be nearly  perpendicular [31]. Fletcher [321 a t t r ibu te s  

this to   the   fa i lure  of the  steepest  descent  theory  to  adequately  repre- 

sent  functions w i t h  minima. He fur ther   asser t s  t h a t  "the  only  functions 

fo r  which the  steepest  descent  property  holds  along  the whole direction 

of search and which s t i l l  have a minimum are  those w i t h  spherical con- 

tours ,  and t h i s  does n o t  adequately  represent  the m i n i m u m  of a general 

function" [32]. Research t o  strengthen this method for   eccentr ic  

functions o r  functions whose contours  are  distorted  hyperspheres has 

been carried o u t  [33]. However, as  Fox [28]  points o u t ,  these  modifica- 

tions are  of  l i t t l e  value when compared t o  more recent  techniques  for 

function  minimization. 

A.5 Fletcher-Reeves'  Conjugate  Gradient Method 

The conjugate  gradient method i s  a special  case of the more 

general method of conjugate  directions and was f i r s t  developed by 

Hestenes and St iefel  [34]. In the  conjugate  gradient method, the 

search  directions ell, ..., d are  generated such t h a t  cli+l represents 

a l inear  combination of  the  present  gradient  vector gi+l and previous 

direction  vectors cl1 , . . . , d . .  Tha t  i s ,  

41 

-1 
3 

W i t h  t h i s  scheme for defining new search  directions,  the  property 

of these  directions being - A-conjugate is  retained. 

40 



The  Fletcher-Reeves  algorithm [14] converts the N-dimensional 

problem  into a  sequence of one-dimensional  problems;  however, the 

accuracy of the  one-dimensional  minimization  is not  as crucial for 

this  method  as  it  is  for  the  Davidon-Fletcher-Powell  algorithm [ 11 1. 

For  quadratic  functions,  Myers [29] has  shown  tha.t the direction  vectors 

generated by the  Fletcher-Reeves  method are the  same  theoretically 

as  those  generated by the Davidon-Fletcher-Powell method, provided 

that  the initial step  for  each  method  is  taken in the direction of 

the  steepest  descent.  This  method  reduces  the  convergence  difficulties 

encountered by the  method of steepest  descent. Thus, accelerated  con- 

vergence  can  be  attained  by reinitializing  the  search  directions  to 

those of the  steepest  descent  method  after  every N + 2 iterations. 

This  becomes  especially  necessary  for  nonquadratic  functions  because 

the  conjugate  gradient  technique  tends to generate  nearly  dependent 

search  directions  after N or so iterations [lll. With  regard  to  re- 

initialization, Fox proposes  that  if  the  function  is  not  both  highly 

eccentric and  twisted  and "if  the  starting  point  is  known  to  be a 

poor  approximation  to  the  minimum of a  nonquadratic  function, it  may 

pay  to restart  after  the  first N or  so cycles  should  they  fail  to 

produce a  minimum, but not  restart  thereafter" [28] .  

A.6 Jacobson-Oksman's  Method 

The  Jacobson-Oksman  method  [15] of function  minimization  is  an 

innovative and  relatively  new  approach  which  is  based  not  on  quadratic 

functions of the  type 
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b u t  on homogeneous f u n c t i o n s   o f   t h e   f o r m  

f ( x )  - = ?(x - - & ) I  g ( x )  - + w 
where 

- A i s  an N x N c o n s t a n t   p o s i t i v e   d e f i n i t e   m a t r i x  

x i s   t h e   l o c a t i o n   o f   t h e  minimum 

w i s   t h e  minimum func t ion   va lue ,  f(x+,,) 

y i s   t h e  degree o f  homogeneity. 

-m - 

Based on homogeneous f u n c t i o n s ,   t h i s   a l g o r i t h m   i s   n o t   c o n c e r n e d  

w i t h   e i t h e r   t h e   H e s s i a n   m a t r i x   o r   a p p r o x i m a t i o n s   t o   i t s   i n v e r s e .  The 

method  converges i n  N + 2 s t e p s   f o r  homogeneous func t ions .  However, 

only  descent and not  convergence has  been proven fo r   genera l   f unc t i ons .  

Therefore,   the  a lgor i thm  cannot be expected t o  converge i n  N + 2 steps 

fo r   genera l   func t ions .  It i s  noteworthy t o  underscore  the  arduous 

t a s k   o f  programming  the  algorithm  even  though i t  requ i res   ne i the r   t he  

Hessian  matr ix  nor a one-dimensional  minimization scheme e x c e p t   t o  

guarantee   descent   o r   s tab i l i t y .  

A. 7 Davidon-Fletcher-Powell ' s  Va r iab le   Me t r i c  r'rlethod 

Based on t h e   o r i g i n a l  work o f  Davidon  [26] , F le tche r  and Powel 1 

mod i f i ed   t he   va r iab le   me t r i c  method i n   o r d e r   t o   e x p l o i t   i t s   q u a d r a t i c  

convergence  propert ies and i t s   s t a b i l i t y   [ 1 7 ] .  The essence o f   t h e  

method i s   i n   t h e   f o r m a t i o n  o f  a sequence of p o s i t i v e   d e f i n i t e   m a t r i c e s  

which  are  used i n   t h e   d e t e r m i n a t i o n  o f  the   search   d i rec t ions .  Any 

p o s i t i v e   d e f i n i t e   m a t r i x  may be  used t o   s t a r t   t h e   i t e r a t i o n .   T h i s  

m a t r i x   i s   t h e n   u p d a t e d   a t  each i t e r a t i o n  and converges t o   t h e   i n v e r s e  
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of the  Hessian  matrix  at  the  minimum.  The  variable  metric  method  also 

replaces  the  N-dimensional  minimization  problem  with  a  sequence of  one- 

dimensional  minimizations  using  Davidon's  cubic  interpolation  method. 

Since  gradient  information  is  required  for  the  variable  metric  method, 

Stewart [18] has  developed  another  modification  allowing  gradients 

to  be  calculated  by  the  finite  difference  technique if analytic 

gradients  are  unavailable.  Based  on  the  fact  that  an  approximation 

to  the  inverse. of the  Hessian  matrix  is  available,  Stewart's  modification 

extracts  an  approximation  to  the  Hessian  matrix  which  is  used  to  compute 

the  step  size  that  will  produce  maximum  accuracy in the  finite dif- 

ference  gradient. 

A. 8 Davi  don ' s Variance  Method 

Davidon's  variance  method [161, occasionally  referred  to  as 

Davidon's  second  method,  is  a  similar yet simpler  minimization 

algorithm  than  his  first  method,  the  variable  metric  method  [261. 

Within  this  context,  the  term  variance  has  been  generalized  to  mean 

the  inverse  of  the  Hessian  matrix of any  function,  which  will  be 

computed by successive  estimates  as in the  original  variable  metric 

algorithm.  Therefor'e,  the  problem of inverting  the  Hessian  matrix  is 

avoided.  Also,  the  one-dimensional  minimization  subproblem  is  no  longer 

required  provided  a  decrease in the  function  is  realized  at  least  once 

every N iterations [ll]. However,  the  algorithm's  principal  drawback 

is  its  sensitivity  to  the  user's  selection of three  parameters a, 6 

and K where 0 < a < 1 < 6 and K > 0 [ll, 161. These  parameters  appear 
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to  be  very  much  problem  dependent  and  thereby limit  the  usefulness of 

this  technique. 

A.9 Fletcher's  New  Variable  Metric  Method 

Derived  from Davidon-Fletcher-Powell's variable  metric  algorithm, 

Fletcher's  new  variable  metric  method [lS] dispenses  with  the  linear 

search  which  is  crucial  to  the  Davidon-Fletcher-Powell  algorithm 

and  prdvides a new  updating  formula for  the  approximation to the 

inverse of the Hessian  matrix.  Having  discarded  the  linear search, 

the  property of quadratic  termination  cannot  be  proven  and  is  replaced 

by a property for  quadratic  functions  requiring  that  the  eigenvalues 

of  the  inverse of the  Hessian  approximation tend  monotonically  toward 

those of the  inverse of the  Hessian  matrix.  Also  required at each 

iteration  is a  sufficiently  large  reduction in the  function  value in 

order to guarantee  ultimate  convergence. An addition  to  the  algorithm 

is  the  retention of the  linear  search  capability  which  is  invoked 

when  it  is  necessary  for  other  reasons  to  use  more  than one  evaluation 

of the  function  and  gradient  per  iteration. 
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