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1. Introduction

The prediction of transient linear or nonlinear response of structures
is almost invariably accomplished by using a temporal finite-difference
scheme to effectively eliminate time as a variable and reduce the system
to a set of algebraic equations in the unknown nodal variables of the
finite element discretization. Finite differencing in time may be
either of the explicit or implicit type. Furthermore, the resulting
algebraic equations may be at times linearized within a time step. The
type of temporal scheme chosen together with response approximations
determines the computational effort required to solve for the unknowns
at time (t+At) knowing the same at time t. With an explicit scheme such
effort is small although stability considerations 1imit the size of the time
step. On the other hand, with an implicit scheme the computational effort
within a time step may be significant but inherent stability of the
scheme permits larcger time steps compared to those allowed by explicit
schemes. Of interest in this paper are those schemes which essentially
linearize response within a time step and use an explicit scheme as in
DYCAST [1] and those which do not linearize response within a time step
and use an implicit scheme as in ACTION [2] .

For schemes which do not linearize the response within a time step,
several different techniques for the solution of the nonlinear equations
may be used. Such techniques have been discussed at great lengths by

Bergan [3] and Stricklin et al [4] . Of particular interest is the
technique utilizing the minimization algorithms of mathematical programming.

This approach has been used successfully for nonlinear structural analyses



[51-[71. 1In this case, the problem of finding the solution of the equilibrium

equations can be equivalently posed as the one corresponding to the minimum
value of a potential function. For all structural problems with geometric
and material nonlinearities of the type considered herein such a potential
function always exists. However, only positive or negative definite

systems can be handied by this technique with the result that some un-
stable @quilibrium configurations for which the potential function has a
non-definite form remain intractable. This is not a very serious limitation
however, since the determination of such eauilibrium configurations is
usually of academic interest.

The two simultators DYCAST and ACTION are intended for solving
inertial problems such as those involving the elastic-plastic large
deformation response of structures. It is well-known that, more often
than not, such problems are best solved by implicit techniques [8].

Since, the solution effort within a time step with an implicit scheme,
with or without linearization, is by no means minimal but presumably
comparable to that using minimization algorithms, the latter are appeal-
ing in that they soTve the actual nonlinear problem. Hence, a rather
rigorous evaluation of their effectiveness in predicting nonlinear
structural response is deemed necessary. Of course, similar investiga-
tions have been carried out by previous investigators [9],[10],[11],

but only as regards the minimization of nonlinear mathematical functions.
Geometric and material nonlinearities cannot in general be described by
smooth nonlinear functions of the type considered by previous investiga-

tors. An energy evaluation for an inelastic member is several times more



expensive than that for a purely elastic member. Furthermore, the com-
putational effort involved in the function and gradient evaluations in
the case of finite element models, with rather specialized connectivity
properties leading to banded stiffness matrices, may bear no direct

and simple relationship with the computational effort for simple mathe-
matical functions. The conclusions regarding the effectiveness of these
algorithms for solving nonlinear problems of structural analyses are
l1ikely to be different. The effectiveness of these algorithms may be
very much a function of the type of nonlinearity, geometric or material,
and also whether a static or a dynamic problem is being considered.

We have, in this study, examined a host of unconstrained minimization
algorithms with a view of determining their effectiveness for solving
static or dynamic structural problems involving either (i) geometric,
(ii) material,or (iii) a combination of geometric and material nonlinear-
ities.

2. Classification of Algorithms

In the realm of mathematical programming, the algorithms used for
unconstrained minimization can be broadly classified into three distinct
classes stemming from the level of computational sophistication: (i)
the zeroth order requiring only function evaluations: (ii) the first
order requiring evaluation of the gradient as well as the function and
(iii) the second order requiring, in addition, a variable metric
related to the curvatures of the function. Only the techniques belong-
ing to the latter two categories have been more frequently used for

structural analysis, apparently because of their higher effectiveness in



comparison with zeroth order techniques. The minimization algorithms
of the zeroth and first order have very modest storage requirements
since at no time is the assembled stiffness matrix of the structure
generated. For linear problems with analytic derivatives (derivatives
not evaluated through finite differencing), some of these techniques can
be nearly as efficient as the conventional stiffness matrix formulation
coupled with a Choleski decomposition technique.

The following algorithms, details of which can be found in Appendix A,
were examined for their effectiveness in solving static and dynamic
structural problems involving geometric and/or material nonlinearities:

1. Zeroth Order Algorithms

a. Nelder and Mead's Simplex Method [12]
b. Powell's Conjugate Direction Method [13]
2. First Order Algorithms

a. Method of Steepest Descent
b. Fletcher-Reeves' Conjugate Gradient Algorithm [14]
c. Jacobson-Oksman's Algorithm [15]

3. Second Order Algorithms

a. Davidon's Variance Algorithm [16]
b. Davidon-Fletcher-Powell's Variable Metric Algorithm {17,18]
c. Fletcher's New Variable Metric Algorithm [19]
The efficiency of any given algorithm is quantified by the number
of function and gradient evaluations (or equivalent function evaluations)
and by the amount of total CPU time required to solve a given problem

to within a prescribed degree of accuracy. Previous investigators have



also utilized the number of minimizations as a criterion for efficiency.
However, it is felt that this alone is not a meaningful criterion because
the computational effort involved in a single minimization of a given
technique may be significantly different from that of another. Thus, the
total number of minimizations is not a meaningful measure of total
computational effort. Both analytic and finite difference derivatives
are used with a view to determining the sensitivity of these algorithms
to inaccuracies in gradient evaluations and to determine the compu-
tational efficiency ensuing from the use of an analytic gradient.
Development of an analytic gradient presents no insurmountable problems
when only geometric nonlinearities exist. With material nonlinearities
however, the picture is fundamentally different because the bookkeeping effort
increases significantly. The details of the calculation of analytic
derivatives for nonlinear structural problems of the type considered
herein are presented in reference [20].

3. Classification of Problems and Their Formulation

The problems to be analyzed are arranged into five different
categories stemming from the type or degree of nonlinearity and from
whether the problem is static or dynamic. Four categories of the static
variety were chosen and include the following: (i) the elastica problem,
Figure 1, restricted to mild geometric nonlinearities, P/Pcr<0'4;

(ii) the rod-spring problem, Figure 2, which is geometrically highly
nonlinear; (iii) an elastic-plastic cantilever beam subjected to a tip
bending moment, Figure 3, with only material nonlinearties (deformations

and rotations constrained to be small and geometrically linear); and



(iv) an elastic-plastic cantilever beam subjected to a tip bending moment
with rotations allowed to be moderately large. The fifth (v) cate-

gory is a transient problem: an impulsively loaded elastic-plastic
clamped beam, Figure 4, wherein the rotations are allowed to be moderately
large. The structural response of each system as predicted in this study
is in excellent agreement with that presented by Huddleston [21] for the
elastica problem; by Haisler, Stricklin and Stebbins [22] for the rod-
spring problem; and by Belytschko .and Schoeberle [23] for the impulsively
loaded elastic-plastic clamped beam problem.

The minimization approach as applied to the solution of transient
nonlinear structural problems consists of minimizing a potential function
associated with the system for an assumed relationship between displace-
ments and time. The solution process accommodates static response of
massless systems and transient response of systems wherein some of the
components may have zero masses as special cases. For the purposes of
this study, the displacement-time relation for each generalized nodal
variable of our finite element model is assumed to be of the form [24]

Xeq =23 * by (at) + %‘ (a6)2 + 2L (o)’ (1)
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where Xei is the 1i-th generalized nodal displacement at the end of
the time step and ai’bi’ci and Bi are constants. These constants
are determined in terms of generalized displacement, Xoi’ velocity,
ioi’ and accelerations, ioi’ at the beginning of the time step and the
generalized displacement, Xei’ at the end of the time step. The
equation of motion corresponding to the i-th degree of freedom takes

the form



U _
tax, =0 (@)

6 6 o -
Mt —= (Kaq = Xoi) = = X4 - zxoi] - F
(at) ) »

(At

(to + At)

where Mi’ Fi and U are respectively, the mass, exciting force and
strain energy corresponding to the 1i-th degree of freedom. The equilib-
rium equations, Eq. (2) for i=1,...,N for a system with N degrees

of freedom, can be regarded as the stationary conditions for the function-

al S
N ,
S = 2, '——3—75 e, - _—fljz X . +-6 % 2?'.) X .] M,
_i‘=-l ;[(At) el ((At) 01 (At) 01 + 01 el 1 ( )
3
.l (o * 8¢) e

where C 1is an arbitrary constant. Because the masses, Mi’ i=1,...,N
are positive quantities and U 1is a positive semi-definite function for
most structural materials, the space S can be shown to be convex.
Equations (2), for i=1,...,N are thus necessary conditions for S to
be a minimum.

Once the assumption of the displacement-time relation is made, the
minimization approach, unlike the incremental stiffness approach, solves
the actual nonlinear problem within a given load or time step without
linearization. Consequently, iteration at constant load to improve
the equilibrium or force imbalance at the end of a load or time step

is not required.

4. Discussion of Results

The performance of the selected unconstrained minimization algorithms

will now be summarized with regard to their effectiveness in predicting



nonlinear structural response. However, in order to sanction an inter-
class as well as an intra-class assessment of the zeroth, first and
second order algorithms, a factor which is a composite of the number of
function and gradient evaluations was defined and termed the number of
equivalent member energy evaluations. The determination of this

factor depends on how the gradient is calculated. The i-th component

of the gradient of S using central differences is given by

S(t, Xa1> Xep -~ xe1.+Axe1., Xe1'+1 ...xeN)
¥ _ -S(t, Xﬁel’i Xe2_'~i_f_)(_ei'A)(_<_a_i_’_ z(_e_ij_l:'xeNg (4)
E)Xe_i 2 AXe_i

where AX,; is a small change in the i-th component. In computing

S 1in equation (4), only the energies of the affected members are
recomputed. Thus, in using central difference operation, each compo-

nent of the gradient vector corresponding to any one nodal degree of

freedom involves at least two member energy evaluations, four if the node is
common to two elements, six if the node is common to three elements,

and so on. For an analytic gradient, however, the gradient calculation
involves only a single function which is similar to the function for the
member energy evaluation (see reference 20 for details). The 1i-th

component of the gradient vector may be written as

aU

i “ei i
Xaj Xg

(5)



The term requiring an analytic expression is (BU/aXei) which can be
m m
evaluated as _3U _ §° M- [ 3¢ dv
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vy Vi
or equivalently for one step incremental loading or unloading

aiu = Z f"k<;e >d"k (6)
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where W represents the strain energy density and m 1is the number of
members or elements which has the 1i-th degree of freedom in common.
Thus, the term 5%97 involves a volume integral which is very similar
to that required fﬁl a member energy evaluation. Hence, it may be
assumed that each component of the analytic gradient vector involves
approximately at least one member energy evaluation, two if the node is
common to two elements, three if the node is common to three elements
and so on. Consequently, a significant reduction in the number of
equivalent member energy evaluations and in CPU time should be realized

if analytic gradients are used instead of finite difference gradients.

4.1 Results Using Finite Difference Gradients

For most minimization algorithms using finite difference approxi-
mations for the gradient, the computational effort required to evaluate
the gradient using a central difference operator may be nearly twice
that required for either a forward or backward difference operator.
This computational advantage is partially offset by the fact that the
accuracy of the derivatives obtained by utilizing the forward or back-

ward difference operator is 1likely to be poor. Our Timited studies



indicate that for first order methods considerable savings in computa-
tional time may be realized for some problems by using forward or back-
ward difference derivatives. It is tacitly assumed However that for

the calculation of such derivatives, stepsizes are much smaller (appro-
ximately 1/100th to 1/1000th; with the minimum being dictated by the
precision of the computer) than the stepsizes used for central difference
derivatives. The same computational advantage may not be realized with
second order methods utilizing a variable metric which is updated
recursively using current function and gradient information and converges

to the inverse of the Hessian matrix of the functional S. In this
case, the inaccuracies in the variable metric resulting from forward
or backward difference derivatives can retard the convergence rate
substantially, thus offsetting the savings accrued from the relatively
cheaper gradient evaluations. For second order methods, the only time
forward or backward difference derivatives appear to be competitive with
central difference derivatives is when the initial variable metric,
Ho’ is set equal to the identity matric, I, at the beginning of each
load or time step-of a nonlinear analysis and is not carried forward
as the initial variable metric of the next step. Our limited experi-
ments using forward and backward difference derivatives have revealed
that the performance of most minimization algorithms employing such
derivatives is unpredictable and quite sensitive to the type and
degree of nonlinearity in question, even more so than with central

difference derivatives. Hence, based on this study, it is recommended

that their use should be avoided whenever possible.

10



The computational effort expended by the various minimization
algorithms using either analytic or central difference gradients is documented
in the following tables by three weighting factors normalized to their
respective minimum value; such that, the most efficient algorithm will
have weighting factors of 1.0. The first of these cerresponds to
the number of minimizations, the second to the number of equivalent
member energy evaluations and the third to the elapsed CPU time. For
the results reported in Tables 1 through 5, all gradients were evaluated using
a central difference operator.

The effects of geometric nonlinearities on the computational effort
required by the various algorithms can be observed in Table 1 for a
mildly nonlinear example and in Table 2 for a highly nonlinear example
While none of the first order methods considered were competitive,
Powell's conjugate direction method presents stiff competition to sec-
ond order methods which set the initial variable metric to the identity
matrix Ho = 1 at the beginning of each Toad step. for the degree
of geometric nonlinearity considered, Davidon-Fletcher-Powell's method
using an updated variable metric (ﬂo = 1 only initially) is more
efficient. Also, the computational advantage of second order methods
which update the variable metric recursively over those which do not,
can be readily seen in Table 1. The extremely poor performance of
some of the methods in Table 1 suggest that they hold little promise

for other cases of nonlinearities.

The effects of material nonlinearities arising from loading and

unloading while in the inelastic range can be seen in Table 3. For

11



this study, a linear elastic response is considered for the first two
loading steps followed by two loading steps in the inelastic range
and a final unloading step in the elastic range. For the linear
elastic portion wheré equation (3) has a quadratic form all methods
performed at least marginally well with the exception of Nelder-Mead's
method and the method of steepest descent which performed poorly. An
unexpected result came from the fact that the Jacobson-Oksman algorithm
had to be restarted repeatedly to ensure linear independence of the
search directions. This is reported to have never been necessary by
Jacobson and Oksman [15] for their test functions. Although initially
superior for the linear elastic steps, Davidon-Fletcher-Powell's method
is less competitive than Powell's conjugate direction method, (a
zeroth order method) for inelastic loading. Fletcher's method is
initially very sluggish in finding a solution but is found to be com-
petive after the first load step and superior during inelastic loading.
However the superiority of Davidon-Fletcher-Powell's method is regained
when unloading occurs and overall it is again the more efficient method.
This 1is as expected in that methods, 1ike Davidon-Fletcher-Powell's
method, which utilize the property of quadratic termination will be
more efficient for problems involving quadratic functionals than
methods 1ike Fletcher's method which discard this property.

Table 4 summarizes the computational effort expended in solving
a problem with a high degree of geometric and material nonlinearities.
Only Fletcher's method was successful in solving this problem within

a reasonable amount of computer time for the specified load steps as

12



Davidon-Fletcher-Powell's method failed to converge during the first
step in the inelastic range. The reason for this failure to converge
could be attributed to either taking too large of a load step or to
inaccuracies in the variable metric resulting from the use of central
difference gradients.

Table 5 represents the results from a transient problem wherein,
to a moderate degree, both geometric and material nonlinearities were
included. Again overall superiority was demonstrated by Fletcher's
method using an updated variable metric.

4.2 Results Using Analytic Gradients

The above results, together with our experiments with other finite
difference operators, clearly indicate that all first and second order
algorithms are critically influenced by the accuracy of the gradient
vector. This Teads very naturally to the consideration of an analyt-
jcally derived gradient vector and of its effectiveness., The per-
formance of the first and second order methods using analytic gradients
is reported in Tables 6 through 8.

The effects of geometric nonlinearities on the computational
effort required can be observed in Table 6 for a mildly nonlinear prob-
lem and in Table 7 for a highly nonlinear problem. These results
again indicate the superior performance of the second order methods.
Also, as the degree of geometric nonlinearity increases or in other
words as Eg. (3) becomes more nonquadratic, the superiority of Fletcher's
method over Davidon-Fletcher-Powell's method becomes more and more

evident. It should also be noted that Fletcher-Reeves' method using

13



analytic gradients was able to converge for all load steps considered
whereas using central difference gradients, it was not,

The effects of material nonlinearities are reported in Table 8.

For this study, two elastic and two inelastic loading steps are made.
For the linear elastic portion, the results correlate well with those
reported in Table 3, However, for inelastic loading, Davidon-Fletcher-
Powell's method maintained its superiority over Fletcher's method.

This is quite interesting in that a definite change in performance is
observed from that reported in table 3.

The relative performance of the methods using central difference and
analytic gradients 1is documented in Tables 9-11, Analytically derived
gradients markedly improve the performance of the first and second order
methods with the most impressive improvement occurring when only material
nonlinearities are considered, Table 11, It is to be expected that
as the number of inelastic members increases, the relative performance
of any first or second order algorithm utilizing analytic gradients will
continue to improve.

5. Conclusions

The performance of the selected unconstrained minimization aigo-
rithms has been summarized with regards to their effectiveness in predict-
ing nonlinear structural response, Based on the data reported, Powell's
conjugate direction method is the only zeroth order method which demon-
strated good performance, particularly when only material nonlinearities
were considered. None of the first order methods considered were competi-
tive and in general, their use is not recommended for nonlinear structural

analysis. Despite inaccuracies in the variable metric due to central

14



difference derivatives, the second order method are the more efficient algorithms,

primarily because they exploit the curvature related information of the
function. Davidon's variance algorithm is not recommended for general
structural analysis because of its critical dependence on three user
supplied parameters. When mild geometric or material nonlinearities
are considered separately, Davidon-Fletcher-Powell's method is found

to be more cost-effective on an overall basis over the range of load

or time steps considered herein. However, it is found that overall
Fletcher's method surpasses Davidon-Fletcher-Powell's method when
geometric and material nonlinearities are combined for both static

and dynamic problems. Furthermore, the results indicate that with time
and an increasing degree of geometric nonlinearity, Fletcher's method
becomes increasingly cost-effective.

The sensitivity of the first and second order algorithms to
numerical differentiation and the computational efficacy ensuing from
the use of analytic gradients was also determined. The use of analytic
gradients results in a substantial savings in computational effort.
This saving is the result of not only a cheaper gradient evaluation but
in most cases, a faster convergence to the solution because of the
higher accuracy of all computed quantities.

Therefore, the following recommendations can be made. For general
nonlinear structural analysis, Fletcher's new variable metric method
using an updated variable metric and, if possible, analytic gradients is
the best minimization algorithm of those considered herein. Since Fletcher's

method is initially slow in converging to a solution, it is recommended that

15



further studies centered around a more appropriate choice for the ini-
tial variable metric are needed. If the degree of nonlinearity is mild
and only one type of nonTinearity is considered, Davidon-Fletcher-
Powell's method using an updated variable metric and, if possible, analy-

tic gradients is preférred. If analytic gradients are unavailable,

then central difference gradients should be used. The use of either

forward or backward difference should be avoided.
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degrees of freedom, solid rectangular €ross
section).
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Table 1.~ Performance Data for the Elastica Problem
Using Central Difference Gradients.

MINIMIZATION APPLIED AXIAL LOAD, P/Pcr
ALGORITHM 0.1 0.2 0.3 0.4
Nelder-Mead's (m)91.53* - - =
Simplex (e) 4.42 - - -
Method (t) 3.99 - - -
Powell's Conjugate (m) 1.00 7.91 7.00 6.14
Direction (e) 2,38 36.78 32.12 28.13
Method (t) 2,05 27.80 25.61 21.82
Fletcher-Reeves' Method (m) 3.14 24.45 45,83* -
with restarts after the ge) 2.30 31.13 55.51 -
first N+2 iterations only. (t) 1.96 23,40 42.06 -
Method of (m) 2.54 17.91 17.58** -
Steepest (e) 1.82 22.78 20,90 -
Descent (t) 1.47 17.15 16.72 -
Jacobson-0Oksman's émg }’;? 33'03 28'5?* -
Method e 7 69.1 60.2 -
(t) 1.45 55.03 50,39 -
Davidon's Variance (m) 3.39*% - - -
Method with (e) 2,74 - - -
Hy=1 (t) 1.51 . - -
Davidon's Variance (m) 3.22 17.27 26.00* -
Method with HskL (e) 1.51 16.00 23.41 -
where «=0.1 (t) 1.46 13.42 20.61 -
Fletcher's Method (m) 3.78 40.73 31.08 28.14
with H.=I always (e) 1.77 37.50 28.12 25.56
-0 = (t).1.59 30.64 23.45 20.62
Fletcher's Method (m) 3.78 1.00 2.00 2.00
with H_=I only (e) 1.79 1.00 1.87 1.85
initially. (t) 1.79 1.00 1.72 1.72
Davidon-Fletcher- (m) 1.53 9,18 13.58 11.21
Powell's Method with (e) 1.00 11.82 17.04 14,21
ﬂo=l_a]ways (t) 1.04 11.44 15.49 12.84
Davidon-Fletcher- (m) 1.53 1.64 1.00 1.00
Powell's Method with (e) 1.00 1.91 1.00 1.00
ﬂo=l_on]y initiaily. (t) 1.00 1.79 1.00 1.00

*Failed to converge for given load increment
**Converged but analysis terminated
(m)...Weighting factor for the number of minimizations.

(e)...Weighting factor for the number of eaquivalent member energy evaluations.
(t)...Weighting factor for the elapsed CPU time.,
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Table 2.- Performance Data for the Rod-Spring Probiem

Using Central Difference Gradients.

MINIMIZATION RESULTS FROM THIRTY (30)
ALGORITHM LOAD STEPS
Powell's (m) 3,08
Conjugate (e) 7.02
Method (t) 5.40
Fletcher's Method with (m) 1.57
Hy=1 only initially (e) 1.47

(t) 1.34
Davidon-Fletcher-Powell's (m) 1.00
Method with H, =1 only (e) 1.00
initially (t) 1.00

...Weighting factor for the number of minimizations.
..Weighting factor for the number of equivalent member energy

evaluations.

..Weighting factor for the elapsed CPU time.
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Table 3.- Performance Data for an Elastic-Plastic
Cantilever Beam Subjected to a Tip Bending
Moment with Small and Geometrically Linear
Deformations and Rotations Using Central
Difference Gradients.

APPLIED TIP BENDING MOMENT, M/Myp

MINIMIZATION

ALGORITHM 0,215 1.074 1.289 1,397 1.289
Nelder-Mead's m)360.82* - - - -
Simplex e) 18.73 - - - -
Method t) 13.63 - - - _
Powell's Conjugate m) 1.00 3,00 1.00 1.00 2.44
Direction e) 1.83 10.59 2.16 1.74 5.75
Method t

1.44 4,25 1.86 1.70 4.97

)

)

)

)

)

)

) 2.18 6.25  10.31*
) 1.22 7.06 9,54
) 1.00 2,99  10.84
)

)

)

)

)

)

)

Fletcher-Reeves' method

with restarts after the
first N+2 iterations only

o+ D =

272.73* - - - -
95 - - - -

m
e)146.
Steepest Descent £) 89.89 - - - -

8.18 26.25 14.06* - -
3.51 22.57 9.72 - -
2,40 8.53 8.86 - -

Davidon's Variance

m
Method with e
Hy = kI where x=0.1 t
9.45 1.75 1.17 1.44 2.67
4.28 2.13 1.00 1.00 3.09

3.20 1.34 1.00 1.00 2.82

Fletcher's Method
with H.=I only

1n1t15?

Davidon-Fletcher-Powell's

Method with ﬂo=1_on1y

m
e
t

1.55 1.00 2.29 3.52 1.00

m)
e) 1.00 1.00 2.09 2.67 1.00
t)

(
(
(
(
(
(
(
(
(
Method of é
(
(
(
(
(
(
(
E
( 1.02 1.00 2.49 2.65 1.00

initially

*Failed to Converge for given Toad increment
.Weighting factor for the number of minimizations.

(m)..
(e)...Weighting factor for the number of equivalent member energy evaluations.
(t)...Weighting factor for the elapsed CPU time.
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Table 4.- Performance Data for an Elastic-Plastic
Cantilever Beam Subjected to a Tip Bending
Moment with Moderately Large Rotations
Using Central Difference Gradients.

APPLIED TIP BENDING MOMENT, M/Myp

Davidon-Fletcher-Powell's
Method with H =1 only
initially

0.4 1.00 2.34*%
6. 5 1.00 2,83
6.02 1.00 3.12

MINIMIZATION —
ALGORITHM 0.215 1.074 1,289 1.397 1.289
Powell's Conjugate (m) 1.00 2,48%% - - -
Direction (e) 1.18 5.62 - - -
Method (t) 1.70 5.14 - - -
Fletcher-Reeves' method (m) 4.91 14 ,33*%* - - -
with restarts after the (e) 3.03 16.21 - - -
first N+2 jterations only (t) 2.75 14,89 - - -
Davidon's Variance (m)17. 24* - - - -
Method with (e) 7.2 - - - -
Ho=xI where k=0.1 (t) 6.78 - - - -
Fletcher's Method (m) 2 1.48 1.00 1.00 1.00
with Hy=1 only (e) 1. 1.35 1.00 1.00 1.00
initially (t) 1. 1.30  1.00 1.00  1.00

(m)

(e)

(t)

o 3

*Failed to converge for given load increment

**Converged but analysis terminated

(m),..Weighting factor for the number of minimizations.

(e)...Weighting factor for the number of equivalent member energy
evaluations,

(t)...Weighting factor for the elapsed CPU time.
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Table 5,

Performance Data for an Impulsively

Loaded Elastic-Plastic Clamped

Beam with Moderately Large

Rotations Using Central Difference

Gradients.,

TIME (IN GROUPS OF TEN TIME STEPS;
MINIMIZATION t,=0.0, At=10"° SECONDS)
ALGORITHM I IT 111 IV
Nelder-Mead's (m)135.41% ~ - -
Simplex (e) 6.44 - - -
Method (t) 2.44 - - -
Powell's Conjugate (m) 1.00 1,26 - -
Direction (e) 2,55 5.92 - -
Method (t) 1.77 4.05 - -
Fletcher-Reeves' Method (m) 5.41 10,377 - -
with restarts after the (e) 2.93 8.15 - -
first N+2 iterations only (t) 2.13 7.10 - -
Method of (m) 21.89% - - -
Steepest (e) 11.75 - - -
Descent (t) 7.12 - - -
Davidon's Variance (m) 15.07** - -
Method with Hy=xI (e) 6.63 - -
where k=0.1 (t) 4.15 - - -

. . 1.

Fletcher's Method with %m? 2.52 ;o SO
Ho=I only initially €/ ’ ’ ' )
—0 = (t) 1.07 1.00 1.00 1.00
Davidon-Fletcher- (m) 2,00 2.39 3.46 2.02
Powell's Method with (e) 1.00 2.08 3.26 1.96
Hp=I only initially (t) 1.00 1.91 2.65 1.69

*Failed to converge (for given time step) at t=6.0x10'6

**Fajled to converge (for given time step) at t=9.0x10"

+Converged but analysis terminated

6

(m)...Weighting factor for the number of minimizations,
(e)...Weighting factor for the number of equivalent member energy

evaluations.

(t)...Weighting factor for the elapsed CPU time.
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Table 6.~ Performance Data for the Elastica
Problem Using Analytic Gradients

APPLIED AXIAT LOAD, P/Pcr

MINIMIZATION

ATLGORITHM 0.1 0.2 0.3 0.4
Fletcher-Reeves' (m) 2.27 16.82 15.06 22.54
Method with restarts (e) 2.80 34.69 20.94 32.31
after the first N+2 (t) 1.99 17.96 12.13 16.23
iterations only

Fletcher's Method (m) 2.97 1.00 1.41 2.15
with H = I only (e) 1.35 1.00 1.00 1.63
initially (t) 1.36 1.00 1.00 1.30
Davidon-Fletcher- {(m) 1.00 1.27 1.00 1.00
Powell's Method with (e) 1.00 1.81 1.22 1.00
H =1 only initially (t) 1.00 1.67 1.16 1.00

(m)... Weighting factor for the number of minimizations.
(e)... Weighting factor. for the number of equivalent member energy

evaluations.

(t)... Weighting factor for the elapsed CPU time.
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Table T.- Performance Data for an Elastic

Cantilever Beam Subjected to a
Tip Bending Moment with
Moderately Large Rotations
Using Analytic Gradients

MINIMIZATION APPLIED TIP BENDING MOMENT, M/Myp
ALGORITHM 0.215 1.074
Fletcher's Method (m) 1.00 1.23
with H =T only (e) 1.00 1.00
initially (t) 1.00 1.00
Davidon-Fletcher- (m) 3.66 1.00
Powell's Method (e) 7.33 1.24

with H = I only (t) 6. 64 1.27

initially

(m)... Weighting factor for the number of minimizations.
(e)... Weighting factor for the number of equivalent member energy

evaluations.

(t)... Weighting factor for the elapsed CPU time.
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Table 8.- Performance Data for an Elastic-Plastic

Cantilever Beam Subjected to a Tip

Bending Moment with Small and Geo-
metrically Linear Deformations and
Rotations Using Analytic Gradients.

MINIMIZATTION APP;IED TIP BENDING MOMENT, M/Myp
ALGORITHM 0.215 1.074 1.289 1.397
*
Fletcher-Reeves' (m) 2.83 19.00 150.20 -
Method with restart (e) 2.12 21.14 139.81 -
after the first N+2 (t) 1.42 3.19 104.15 -
iterations only
Fletcher's Method (m) 8.67 3.50 1.20 1.00
with H = I only (e) 3.43 2.29 3.79 4,75
initially (t) 2.46 1.25 2.38 2.12
Davidon-Fletcher- (m) 1.00 1.00 1.00 2.00
Powell's Method with (e) 1.00 1.00 1.00 1.00
H =1 only initially (t) 1.00 1.00 1.00 1.00

%
Failed to converge for given load increment.

(m)... Weighting factor for the number of minimizations.

(e)... Weighting factor for the number of equivalent member energy

evaluations.

(t)... Weighting factor for the elapsed CPU time.
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Table 9.-

Ratio of the Computational Effort
with Analytic Gradients to That
of Central Difference Gradients

for the Elastica Problem.

MINIMIZATION APPLIED AXIAT, LOAD, P/Pcr
ALGORITHM 0.1 Q0.2 0.3 0.4
* *
Fletcher-Reeves' (m) 0.919 0.688 0.952 1.089
Method with restarts (e) 0.518 0.359 0.452 0.495
after the first N+2 (t) 0.467 0.322 0.404 0.456
iterations only
Fletcher's Method (m) 1.000 1.000 1.000 1.000
with ﬁ = I only (e) 0.320 0.323 0.323 0.323
initially (t) 0.347 0.419 0.417 0.384
Davidon~Fletcher- (m) 0.833 0.778 1.417 0.929
Powell's Method with (e) 0.424 0.306 0.736 0.367
H =1 only initially (t) 0.460 0.390 0.834

0.512

*

Convergence was not achieved for the third load step using central
difference gradients; therefore, the central difference results of
the second load step were used in calculating this ratio.

(m)... Ratio of the number of minimizations.
(e)... Ratio of the number of equivalent member energy evaluations.

(t)... Ratio of the elpased CPU time.
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Table 107 Ratio of the Computational Effort
with Analytic Gradients to That
of Central Difference Gradients
for an Elastic Cantilever Beam
Subjected to a Tip Bending Moment
with Moderately Large Rotations.

APPLIED TIP BENDING MOMENT, M/MyP

MINIMIZATION

ATLGORITHM 0.215 1,074
Fletcher's Method (m) 0.992 0.939
with H = I only (e) 0.345 0.323
initially (t) 0.355 0.331
Davidon-Fletcher- (m) 0.789 1.136
Powell's Method (e) 0.419 0.53%
with H = I only (t) 0.391 0.546
initially

(m)... Ratio of the number of minimizations.
(e)... Ratio of the number of equivalent member energv evaluations.
(t)... Ratio of the elapsed CPU time.
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Table 311, Ratio of the Computational Effort with
Analytic Gradients to That of Central
Difference Gradients for an Elastic-
Plastic Cantilever Beam Subjected to
a Tip Bending Moment with Small and
Geometrically Linear Deformations
and Rotations.

MINTMIZATTON APPLIED TIP BENDING MOMENT, M/M,
ATLGORITHM 0.215 1.074 1.289 1.397
*
Fletcher-Reeves' (m) 1.417 1.520 - -
Method with restart (e) 0.741 0.776 - -
after the first N+2 (t) 0.789 0.786 - -

iterations only

Fletcher's Method (m) 1.000 1.000 0.146
withH =1 (e) 0.342 0.278 0.239
initially ~ () 0.428 0.686 0.164
Davidon-Fletcher- (m) 0.706 0.500 0.063
Powell's Method with (e) 0.425 0.259 0.030
Eo = Z only () 0.548 0.737 0.028
initially

0.026
0.144
0.102

0.021
0.011
0.018

*
Failed to converge using both analytic and central difference
gradients for given load increment.

(m)... Ratio of the number of minimizations.

(e)... Ratio of the number of equivalent member energy evaluationmns
(t)... Ratio of the elapsed CPU time.
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7. APPENDIX
UNCONSTRAINED MINIMIZATION ALGORITHMS
A.1 Introduction

The majority of the unconstrained minimization algorithms con-
sidered in this study hypothesize that the function to be minimized
has a quadratic form. The rationale of this hypothesis is revealed
by examining the Taylor series expansion of a general function of

N variables f(x) about its minimum point x,. That is,

N
Flx) ~ Flx,) +§ {%] SRS
k=1 Zm
H N 2
1 9 f
* ?ﬁ'z 3x; X (x; - xm1) (XJ - XmJ)
i=1 j=1 .
_Tr'
+ higher order terms (A.1)

or in vector form

fx) a+bT(x-x) 45 (x-x)Ax-x)

) X X

+ higher order terms (A.2)
Since at the minimum point Em,the gradient vanishes and the term
(x - 2%9 approaches zero, the higher order terms become relatively
insignificant thereby causing the Taylor series expansion of f(x) to

be dominated by the constant, Tinear and quadratic terms in the
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proximity of the minimum. This suggests that in the neighborhood of
the minimum, many general functions can be approximately represented by
a quadratic. The function to be minimized in this study is Eq. (3).

A prevalent feature of the techniques considered is the replace-
ment of an N-dimensional minimization problem with a sequence of one-
dimensional or linear minimizations along the line.

+ o (A.3)

Xeap = Xt a gy
such that f(§k+]) becomes a function of a alone when the variables
Xy and the search direction gk are both known.

The method utilized for the Tinear minimization depends on the
computational sophistication of the particular algorithm invoked.
If gradient information is available, Davidon's cubic interpolation
method [26, 27, 28] is employed; if not, Powell's quadratic interpolation
method [13, 27, 28] is engaged. Powell's method finds the minimum of
a quadratic which is described by the values of the function at three
points on the line specified by Eq. (A.3). On the other hand,
Davidon's method minimizes a cubic which is defined by the values of
the function and its directional derivative at two points along the
line given by Eq. (A.3). Thus, Davidon's formulae are more elaborate
and time consuming than those of Powell but Davidon's method ordinarily
Tocates the minimum along the line in fewer iterations [27].

Each of the techniques previously listed will now be characterized

with the steps of their algorithms being omitted. The details of the

algorithms are available in the appropriate Titerature cited.
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A.2 Nelder-Mead's Simplex Method

In using the simplex method to minimize a function of N variables,
the function is first evaluated at N + 1 mutually equidistant points
in the space of the N variables. These points are called the vertices
of a regular simplex which in two dimensions corresponds to an equi-
lateral triangle and in three dimensions to a regular tetrahedron.
This direct search technique using regular simplices was devised by
Himsworth, Spendiey and Hext [25]. Nelder-Meld's simplex method [12]
represents an extension of their work wherein the regularity of the
simplex is abandoned. Also, additional flexibility for adaptation of
the simplex to the Tocal geometry of the surface is incorporated. The
basic operations of the simplex method are reflection, expansion and
contraction. The vertex of the simplex with the highest function
value is replaced by another point obtained through a reflection of
that vertex. Depending on the value of the function at this new
vertex, another reflection mayv be required or the simplex may expand
or contract. These operations are repeated until the simplex
essentially collapses on the minimum.

For each of these operations, a corresponding coefficient has
been defined: a reflection coefficient a; a contraction coefficient
Bs; and, an expansion coefficient y. The values assigned to each of
these coefficients are not fixed; however, Nelder and Mead's
recommendation that the user set oo =1, 8= 1/2 and vy = 2 was

incorporated in this study. These values correspond to a simple
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reflection, halving when in difficulty and doubling when a useful
direction is located.

One undesireable feature of the simplex method is that it reguires
a significant amount of computer storage when N is large. This is
true because the coordinates of N + 1 vertices are stored throughout

the minimization process.

A.3 Powell's Conjugate Direction Method

Another direct search method is the univariate method which seeks
the minimum of a function of N variables by changing one variable at
a time. The method of conjugate directions [13] is essentially a
variation of the univariate method wherein the properties of a
quadratic function are exploited. Neglecting the higher order terms,
Eq. (A.2) is a quadratic function with a Hessian matrix A (i.e.

gff = A). Search directions d;,..... , gN # 0 with the property
Bx;z

are said to be conjugate or orthogonal with respect to the weighting
matrix A. Therefore, if these direction vectors are generated such

that

Then it can be shown [28, 29] that they remain A-conjugate and a

conjugate direction has been defined.

In this technicue, each iteration begins with a Tinear search

along N linearly independent directions d, d,, ..., gN, starting at
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the best known approximation to the location of the minimum. After

an initial univariate search along each of the coordinate directions,
conjugate directions are generated by making each iteration define a
new search direction d and choosing d,, dj, ..., dy, d as the Tinearly
independent directions for the next iteration. Applying this procedure
to a positive definite quadratic form, all search directions will be
mutually conjugate after N Tinear minimizations and the exact minimum
will have been found. However, Powell modified his basic procedure
because on occasions it may choose nearly dependent directions;
particularly when minimizing a function of more than five independent
variables [27]. To overcome this, he allows a direction other than

d; to be discarded. Therefore the N search directions can be chosen
so as to be always linearly independent, even though, in some cases,
the same N directions are used for two successive Tinear minimizations.
As a consequence of this modification, one of the mutually conjugate
directions may be discarded, thereby requiring more than N linear

minimizations to find the exact minimum of a quadratic.

A.4 Method of Steepest Descent

The method of steepest descent, first proposed by Cauchy [30],
is perhaps the oldest and most well known gradient technique for
function minimization. It is based on moving in the opposite direction

of the gradient vector for minimization. No other vector can locally

reduce the function value as much since the gradient vector perpen-
dicularly cuts adjacent contours of the function. While simple and

stable, this method often converges slowly and in a zig zag fashion.
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This is because the direction of steepest descent and the direction to
the minimum may be nearly perpendicular [31]. Fletcher [32] attributes
this'to the failure of the steepest descent theory to adequately repre-
sent functions with minima. He further asserts that "the only functions
for which the steepest descent property holds along the whole direction
of search and which still have a minimum are those with spherical con-
tours, and this does not adequately represent the minimum of a general
function" [32]. Research to strengthen this method for eccentric
functions or functions whose contours are distorted hyperspheres has
been carried out [33]. However, as Fox [28] points out, these modifica-
tions are of Tittle value when compared to more recent techniques for

function minimization.

A.5 Fletcher-Reeves' Conjugate Gradient Method

The conjugate gradient method is a special case of the more
general method of conjugate directions and was first developed by
Hestenes and Stiefel [34]. In the conjugate gradient method, the

search directions gq, cees gN are generated such that gﬁ+] represents

a linear combination of the present gradient vector 9i4 and previous

direction vectors dys ... dy. That s,

2
941 ¢

d d.
2

Li+1 T "Lie

95
With this scheme for defining new search directions, the property

of these directions being A-conjugate is retained.
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The Fletcher-Reeves algorithm [14] converts the N-dimensional
problem into a sequence of one-dimensional probiems; however, the
accuracy of the one-dimensional minimization is not as crucial for
this method as it is for the Davidon-Fletcher-Powell algorithm {11].
For quadratic functions, Myers [29] has shown that the direction vectors
generated by the Fletcher-Reeves method are the same theoretically
as those generated by the Davidon-Fletcher-Powell method, provided
that the initial step for each method is taken in the direction of
the steepest descent. This method reduces the convergence difficulties
encountered by the method of steepest descent. Thus, accelerated con-
vergence can be attained by reinitializing the search directions to
those of the steepest descent method after every N + 2 iterations.

This becomes especially necessary for nonquadratic functions because
the conjugate gradient technique tends to generate nearly dependent
search directions after N or so iterations [11]. With regard to re-
initialization, Fox proposes that if the function is not both highly
eccentric and twisted and "if the starting point is known to be a

poor approximation to the minimum of a noncuadratic function, it may
pay to restart after the first M or so cycles should they fail to

produce a minimum, but not restart thereafter" [28].

A.6 Jacobson-QOksman's Method
The Jacobson-Oksman method [15] of function minimization is an
innovative and relatively new approach which is based not on cuadratic

functions of the type
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but on homogeneous functions of the form

1 T .
f(x) = v(x - x) glx) +w

where
A is an N x N constant positive definite matrix
Xn is the location of the minimum
w 1is the minimum function value, f(zm)

vy is the degree of homogeneity.

Based on homogeneous functions, this algorithm is not concerned
with either the Hessian matrix or approximations to its inverse. The
method converges in N + 2 steps for homogeneous functions. However,
only descent and not convergence has been proven for general functions.
Therefore, the algorithm cannot be expected to converge in N + 2 steps
for general functions. It is noteworthy to underscore the arduous
task of programming the algorithm even though it reaquires neither the
Hessian matrix nor a one-dimensional minimization scheme except to

guarantee descent or stability.

A.7 Davidon-Fletcher-Powell's Variable Metric Method

Based on the original work of Davidon [26], Fletcher and Powell
modified the variable metric method in order to exploit its quadratic
convergence properties and its stability [17]. The essence of the
method is in the formation of a sequence of positive definite matrices
which are used in the determination of the search directions. Any
positive definite matrix may be used to start the iteration. This

matrix is then updated at each iteration and converges to the inverse
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of the Hessian matrix at the minimum. The variable metric method also
replaces the M-dimensional minimization problem with a sequence of one-
dimensional minimizations using Davidon's cubic interpolation method.
Since gradient information is required for the variable metric method,
Stewart [18] has developed another modification allowing gradients

to be calculated by the finite difference technique if analytic

gradients are unavailable. Based on the fact that an approximation

to the inverse of the Hessian matrix is available, Stewart's modification
extracts an approximation to the Hessian matrix which is used to compute
the step size that will produce maximum accuracy in the finite dif-

ference gradient.

A.8 Davidon's Variance Method

Davidon's variance method [16], occasionally referred to as
Davidon's second method, is a similar yet simpler minimization
algorithm than his first method, the variable metric method [2€].
Within this context, the term variance has been generalized to mean
the inverse of the Hessian matrix of any function, which will be
computed by successive estimates as in the original variable metric
algorithm. Therefore, the problem of inverting the Hessian matrix is
avoided. Also, the one-dimensional minimization subproblem is no longer
required provided a decrease in the function is realized at least once
every N iterations [11]. However, the algorithm's principal drawback
is its sensitivity to the user's selection of three parameters o, B

and x where 0 < a <1 <pBand k>0 [11, 16]. These parameters appear
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to be very much problem dependent and thereby 1imit the usefulness of

this technique.

A.9 Fletcher's New Variable Metric Method

Derived from Davidon-Fletcher-Powell's variable metric algorithm,
Fletcher's new variable metric method [19] dispenses with the Tinear
search which is crucial to the Davidon-Fletcher-Powell algorithm
and provides a new updating formula for the approximation to the
inverse of the Hessjan matrix. Having discarded the linear search,
the property of quadratic termination cannot be proven and is replaced
by a property for quadratic functions requiring that the eigenvalues
of the inverse of the Hessian approximation tend monotonically toward
those of the inverse of the Hessian matrix. Also required at each
jteration is a sufficiently large reduction in the function value in
order to guarantee ultimate convergence. An addition to the algorithm
is the retention of the linear search capability which is invoked
when it is necessary for other reasons to use more than one evaluation

of the function and gradient per iteration.
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