643 research outputs found

    How can the literature inform counter-terrorism practice? Recent advances and remaining challenges

    Get PDF
    In 2014 an intense debate over the state of terrorism literature was published. Sageman [2014. The stagnation in terrorism research. Terrorism and Political Violence, 26(4), 565–580. doi:10.1080/09546553.2014.895649] claimed that the field had stagnated, mainly due to lack of data sharing between government departments that have access to valuable information that could inform our understanding, and researchers who have the skills and expertise to make sense of this. However, others were more positive regarding the literature, highlighting areas where progress has been made [e.g. McCauley, & Moskalenko (2014). Some things We think We've learned since 9/11: A commentary on Marc Sageman's ‘The stagnation in terrorism research'. Terrorism and Political Violence, 26(4), 601–606. doi:10.1080/09546553.2014.895653; Stern (2014). Response to Marc Sageman's ‘The stagnation in terrorism research'. Terrorism and Political Violence, 26(4), 607–613. doi:10.1080/09546553.2014.895654; Taylor (2014). If I were you, I wouldn't start from here: Response to Marc Sageman's The stagnation in terrorism research’. Terrorism and Political Violence, 26(4), 581–586. doi:10.1080/09546553.2014.895650]. Here we re-visit the literature and identify advances that have been made since 2014. We explore ongoing challenges for terrorism researchers and practitioners, and options for ways forward to ensure evidence-based responses to terrorist individuals and groups

    Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission

    Get PDF
    Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42% of human strains showed a clonal relationship (separated by ≤2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50% of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large “open” pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3% of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3). Conservation in the pathogenicity locus and S-layer correlated with ST affiliation, further extending the concept of clonal C. difficile lineages. This study provides novel insights on the genetic variability and strain relatedness of C. difficile RT014, a lineage of emerging One Health importance. Ongoing molecular and genomic surveillance of strains in humans, animals, food, and the environment is imperative to identify opportunities to reduce the overall CDI burden

    The contribution of animal models to understanding the role of the immune system in human idiopathic pulmonary fibrosis

    Get PDF
    Pulmonary fibrosis occurs in a heterogeneous group of lung disorders and is characterised by an excessive deposition of extracellular matrix proteins within the pulmonary interstitium, leading to impaired gas transfer and a loss of lung function. In the past 10 years, there has been a dramatic increase in our understanding of the immune system and how it contributes to fibrogenic processes within the lung. This review will compare some of the models used to investigate the pathogenesis and treatment of pulmonary fibrosis, in particular those used to study immune cell pathogenicity in idiopathic pulmonary fibrosis, highlighting their advantages and disadvantages in dissecting human disease

    Clostridium difficile ribotype 017 – characterization, evolution and epidemiology of the dominant strain in Asia

    Get PDF
    Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance

    Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017

    Get PDF
    Clostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three decades, it has caused outbreaks on four continents, more than other ‘epidemic’ strains, but our understanding of the genomic epidemiology underpinning the spread of C. difficile RT 017 is limited. Here, we performed high-resolution phylogenomic and Bayesian evolutionary analyses on an updated and more representative dataset of 282 non-clonal C. difficile RT 017 isolates collected worldwide between 1981 and 2019. These analyses place an estimated time of global dissemination between 1953 and 1983 and identified the acquisition of the ermB-positive transposon Tn6194 as a key factor behind global emergence. This coincided with the introduction of clindamycin, a key inciter of C. difficile infection, into clinical practice in the 1960s. Based on the genomic data alone, the origin of C. difficile RT 017 could not be determined; however, geographical data and records of population movement suggest that C. difficile RT 017 had been moving between Asia and Europe since the Middle Ages and was later transported to North America around 1860 (95 % confidence interval: 1622–1954). A focused epidemiological study of 45 clinical C. difficile RT 017 genomes from a cluster in a tertiary hospital in Thailand revealed that the population consisted of two groups of multidrug-resistant (MDR) C. difficile RT 017 and a group of early, non-MDR C. difficile RT 017. The significant genomic diversity within each MDR group suggests that although they were all isolated from hospitalized patients, there was probably a reservoir of C. difficile RT 017 in the community that contributed to the spread of this pathogen

    Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis

    Linear response of vibrated granular systems to sudden changes in the vibration intensity

    Get PDF
    The short-term memory effects recently observed in vibration-induced compaction of granular materials are studied. It is shown that they can be explained by means of quite plausible hypothesis about the mesoscopic description of the evolution of the system. The existence of a critical time separating regimes of ``anomalous'' and ``normal'' responses is predicted. A simple model fitting into the general framework is analyzed in the detail. The relationship between this work and previous studies is discussed.Comment: 10 pages, 6 figures; fixed errata, updtated reference
    corecore