759 research outputs found

    Searching for nova shells around cataclysmic variables

    Get PDF
    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using Halpha images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric Halpha Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of approx.2.5 arcmin, indicative of a nova eruption approximately 120 years ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined 4 asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption approx.300 years ago, making V2275 Cyg a possible recurrent nova.Comment: 14 pages, 50 figures, 3 Table

    Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis

    Full text link
    We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.Comment: accepted for publication in A&A Letters; 5 pages; no figure

    The reverberation signatures of rotating disc winds in active galactic nuclei

    Full text link
    The broad emission lines (BELs) in active galactic nuclei (AGN) respond to ionizing continuum variations. The time and velocity dependence of their response depends on the structure of the broad-line region: its geometry, kinematics and ionization state. Here, we predict the reverberation signatures of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative transfer and ionization code to predict velocity-delay maps for representative high- (C IV~IV) and low-ionization (Hα\alpha) emission lines in both high- and moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization structure of the outflows are all self-consistently taken into account, while small-scale structure in the outflow is modelled in the micro-clumping approximation. Our main findings are: (1) The velocity-delay maps of smooth/micro-clumped outflows often contain significant negative responses. (2)~The reverberation signatures of disc wind models tend to be rotation dominated and can even resemble the classic "red-leads-blue" inflow signature. (3) Traditional "blue-leads-red" outflow signatures can usually only be observed in the long-delay limit. (4) Our models predict lag-luminosity relationships similar to those inferred from observations, but systematically underpredict the observed centroid delays. (5) The ratio between "virial product" and black hole mass predicted by our models depends on viewing angle. Our results imply that considerable care needs to be taken in interpreting data obtained by observational reverberation mapping campaigns. In particular, basic signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary jointly" are not always reliable indicators of inflow, outflow or rotation. This may help to explain the perplexing diversity of such signatures seen in observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201

    On the Origin of the Absorption Features in SS433

    Get PDF
    We present high-resolution optical spectroscopy of the X-ray binary system SS433, obtained over a wide range of orbital phases. The spectra display numerous weak absorption features, and include the clearest example seen to date of those features, resembling a mid-A type supergiant spectrum, that have previously been associated with the mass donor star. However, the new data preclude the hypothesis that these features originate solely within the photosphere of the putative mass donor, indicating that there may be more than one region within the system producing an A supergiant-like spectrum, probably an accretion disc wind. Indeed, whilst we cannot confirm the possibility that the companion star is visible at certain phase combinations, it is possible that all supergiant-like features observed thus far are produced solely in a wind. We conclude that great care must be taken when interpreting the behaviour of these weak features.Comment: Accepted for publication in MNRAS, 8 pages, 6 figure

    Erupting Cataclysmic Variable Stars in the Nearest Globular Cluster, NGC 6397: Intermediate Polars?

    Full text link
    NGC 6397 is the closest globular cluster, and hence the ideal place to search for faint stellar populations such as cataclysmic variables (CVs). HST and Chandra observers have identified nine certain and likely CVs in this nearby cluster, including several magnetic CV candidates. We have combined our recent UV imagery with archival HST images of NGC 6397 to search for new CV candidates and especially to look for dwarf nova-like eruptive events. We find remarkable and somewhat unexpected dwarf nova-like eruptions of the two well-known cataclysmic systems CV2 and CV3. These two objects have been claimed to be {\it magnetic} CVs, as indicated by their helium emission-line spectra. Magnetic fields in CVs are usually expected to prevent the disk instability that leads to dwarf nova eruptions. In fact, most field magnetic CVs are observed to not undergo eruptions. Our observations of the dwarf nova eruptions of CV2 and CV3 can be reconciled with these objects' HeII emission lines if both objects are infrequently-erupting intermediate polars, similar to EX Hya. If this is the case for most globular cluster CVs then we can reconcile the many X-ray and UV bright CV candidates seen by Chandra and HST with the very small numbers of erupting dwarf novae observed in cluster cores.Comment: 12 pages, 3 figures. Accepted for publication in The Astronomical Journal. Two additional authors adde
    • …
    corecore