2,345 research outputs found

    Physics Beyond the Standard Model: Focusing on the Muon Anomaly

    Full text link
    We present a model based on the implication of an exceptional E_{6}-GUT symmetry for the anomalous magnetic moment of the muon. We follow a particular chain of breakings with Higgses in the 78 and 351 representations. We analyse the radiative correction contributions to the muon mass and the effects of the breaking of the so-called Weinberg symmetry. We also estimate the range of values of the parameters of our model.Comment: 14 RevTeX pages, 5 figure

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to K3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the K3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, K3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear β\beta-decays

    Baryon chiral perturbation theory with virtual photons and leptons

    Full text link
    We construct the general pion-nucleon SU(2) Lagrangian including both virtual photons and leptons for relativistic baryon chiral perturbation theory up to fourth order. We include the light leptons as explicit dynamical degrees of freedom by introducing new building blocks which represent these leptons.Comment: 11 page

    Measurement of the β\beta-asymmetry parameter of 67^{67}Cu in search for tensor type currents in the weak interaction

    Full text link
    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general β\beta decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β\beta decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the β\beta-asymmetry parameter in the pure Gamow-Teller decay of 67^{67}Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a 3^3He-4^4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β\beta radiation was observed with planar high purity germanium detectors operating at a temperature of about 10\,K. An on-line measurement of the β\beta asymmetry of 68^{68}Cu was performed as well for normalization purposes. Systematic effects were investigated using Geant4 simulations. The experimental value, A~\tilde{A} = 0.587(14), is in agreement with the Standard Model value of 0.5991(2) and is interpreted in terms of physics beyond the Standard Model. The limits obtained on possible tensor type charged currents in the weak interaction hamiltonian are -0.045 <(CT+CT)/CA<< (C_T+C'_T)/C_A < 0.159 (90\% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β\beta decay and contribute to further constraining tensor coupling constants

    Two-loop representations of low-energy pion form factors and pi-pi scattering phases in the presence of isospin breaking

    Full text link
    Dispersive representations of the pi-pi scattering amplitudes and pion form factors, valid at two-loop accuracy in the low-energy expansion, are constructed in the presence of isospin-breaking effects induced by the difference between the charged and neutral pion masses. Analytical expressions for the corresponding phases of the scalar and vector pion form factors are computed. It is shown that each of these phases consists of the sum of a "universal" part and a form-factor dependent contribution. The first one is entirely determined in terms of the pi-pi scattering amplitudes alone, and reduces to the phase satisfying Watson's theorem in the isospin limit. The second one can be sizeable, although it vanishes in the same limit. The dependence of these isospin corrections with respect to the parameters of the subthreshold expansion of the pi-pi amplitude is studied, and an equivalent representation in terms of the S-wave scattering lengths is also briefly presented and discussed. In addition, partially analytical expressions for the two-loop form factors and pi-pi scattering amplitudes in the presence of isospin breaking are provided.Comment: 57 pages, 12 figure

    Radiative corrections to neutral pion-pair production

    Full text link
    We calculate the one-photon loop radiative corrections to the neutral pion-pair photoproduction process πγππ0π0\pi^-\gamma \to \pi^-\pi^0\pi^0. At leading order this reaction is governed by the chiral pion-pion interaction. Since the chiral π+ππ0π0\pi^+\pi^-\to\pi^0\pi^0 contact-vertex depends only on the final-state invariant-mass it factors out of all photon-loop diagrams. We give analytical expressions for the multiplicative correction factor Rα/2πR\sim \alpha/2\pi arising from eight classes of contributing one-photon loop diagrams. An electromagnetic counterterm has to be included in order to cancel the ultraviolet divergences generated by the photon-loops. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off λ\lambda. The radiative corrections to the total cross section vary between +2%+2\% and 2%-2\% for center-of-mass energies from threshold up to 7mπ7m_\pi. The finite part of the electromagnetic counterterm gives an additional constant contribution of about 1%1\%, however with a large uncertainty.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J.

    The S11NS_{11}- N(1535) and N-N(1650) Resonances in Meson-Baryon Unitarized Coupled Channel Chiral Perturbation Theory

    Get PDF
    The ss-wave meson-baryon scattering is analyzed for the strangeness S=0 sector in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry. Four channels have been considered: πN\pi N, ηN\eta N, KΛK \Lambda, KΣK \Sigma. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism and low energy constants are fitted to the elastic πN\pi N phase-shifts and the πpηn\pi^- p \to \eta n and πpK0Λ\pi^- p \to K^0 \Lambda cross section data. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths of the S11S_{11}- NN(1535) and N-N(1650) resonances, in reasonable agreement with experiment. A good overall description of data, from πN\pi N threshold up to 2 GeV, is achieved keeping in mind that the two pion production channel has not been included.Comment: 35 pages, LaTeX + 7 ps-figure files. Some minor mistakes have been corrected for and a new appendix discussing the matching to HBChPT has been also adde

    Hadronic light-by-light corrections to the muon g-2: the pion-pole contribution

    Full text link
    The correction to the muon anomalous magnetic moment from the pion-pole contribution to the hadronic light-by-light scattering is considered using a description of the pi0 - gamma* - gamma* transition form factor based on the large-Nc and short-distance properties of QCD. The resulting two-loop integrals are treated by first performing the angular integration analytically, using the method of Gegenbauer polynomials, followed by a numerical evaluation of the remaining two-dimensional integration over the moduli of the Euclidean loop momenta. The value obtained, a_{mu}(LbyL;pi0) = +5.8 (1.0) x 10^{-10}, disagrees with other recent calculations. In the case of the vector meson dominance form factor, the result obtained by following the same procedure reads a_{mu}(LbyL;pi0)_{VMD} = +5.6 x 10^{-10}, and differs only by its overall sign from the value obtained by previous authors. Inclusion of the eta and eta-prime poles gives a total value a_{mu}(LbyL;PS) = +8.3 (1.2) x 10^{-10} for the three pseudoscalar states. This result substantially reduces the difference between the experimental value of a_{mu} and its theoretical counterpart in the standard model.Comment: 27 pages, Latex, 3 figures. v2: version to be published in Phys. Rev. D, Note added and references updated (don't worry, sign has not changed
    corecore