104 research outputs found

    The Interstellar N/O Abundance Ratio: Evidence for Local Infall?

    Full text link
    Sensitive measurements of the interstellar gas-phase oxygen abundance have revealed a slight oxygen deficiency (∌\sim 15%) toward stars within 500 pc of the Sun as compared to more distant sightlines. Recent FUSEFUSE observations of the interstellar gas-phase nitrogen abundance indicate larger variations, but no trends with distance were reported due to the significant measurement uncertainties for many sightlines. By considering only the highest quality (≄\geq 5 σ\sigma) N/O abundance measurements, we find an intriguing trend in the interstellar N/O ratio with distance. Toward the seven stars within ∌\sim 500 pc of the Sun, the weighted mean N/O ratio is 0.217 ±\pm 0.011, while for the six stars further away the weighted mean value (N/O = 0.142 ±\pm 0.008) is curiously consistent with the current Solar value (N/O = 0.138−0.18+0.20^{+0.20}_{-0.18}). It is difficult to imagine a scenario invoking environmental (e.g., dust depletion, ionization, etc.) variations alone that explains this abundance anomaly. Is the enhanced nitrogen abundance localized to the Solar neighborhood or evidence of a more widespread phenomenon? If it is localized, then recent infall of low metallicity gas in the Solar neighborhood may be the best explanation. Otherwise, the N/O variations may be best explained by large-scale differences in the interstellar mixing processes for AGB stars and Type II supernovae.Comment: accepted for publication in the Astrophysical Journal Letter

    Rubidium in the Interstellar Medium

    Get PDF
    We present observations of interstellar rubidium toward o Per, zeta Per, AE Aur, HD 147889, chi Oph, zeta Oph, and 20 Aql. Theory suggests that stable 85Rb and long-lived 87Rb are produced predominantly by high-mass stars, through a combination of the weak s- and r-processes. The 85Rb/87Rb ratio was determined from measurements of the Rb I line at 7800 angstroms and was compared to the solar system meteoritic ratio of 2.59. Within 1-sigma uncertainties all directions except HD 147889 have Rb isotope ratios consistent with the solar system value. The ratio toward HD 147889 is much lower than the meteoritic value and similar to that toward rho Oph A (Federman et al. 2004); both lines of sight probe the Rho Ophiuchus Molecular Cloud. The earlier result was attributed to a deficit of r-processed 85Rb. Our larger sample suggests instead that 87Rb is enhanced in these two lines of sight. When the total elemental abundance of Rb is compared to the K elemental abundance, the interstellar Rb/K ratio is significantly lower than the meteoritic ratio for all the sight lines in this study. Available interstellar samples for other s- and r- process elements are used to help interpret these results.Comment: 24 pages, 3 figures. Accepted for publication in Ap

    AccTEE: A WebAssembly-based Two-way Sandbox for Trusted Resource Accounting

    Get PDF
    Remote computation has numerous use cases such as cloud computing, client-side web applications or volunteer computing. Typically, these computations are executed inside a sandboxed environment for two reasons: first, to isolate the execution in order to protect the host environment from unauthorised access, and second to control and restrict resource usage. Often, there is mutual distrust between entities providing the code and the ones executing it, owing to concerns over three potential problems: (i) loss of control over code and data by the providing entity, (ii) uncertainty of the integrity of the execution environment for customers, and (iii) a missing mutually trusted accounting of resource usage. In this paper we present AccTEE, a two-way sandbox that offers remote computation with resource accounting trusted by consumers and providers. AccTEE leverages two recent technologies: hardware-protected trusted execution environments, and Web-Assembly, a novel platform independent byte-code format. We show how AccTEE uses automated code instrumentation for fine-grained resource accounting while maintaining confidentiality and integrity of code and data. Our evaluation of AccTEE in three scenarios – volunteer computing, serverless computing, and pay-by-computation for the web – shows a maximum accounting overhead of 10%

    The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A

    Full text link
    The isotope ratio, 85Rb/87Rb, places constraints on models of the nucleosynthesis of heavy elements, but there is no precise determination of the ratio for material beyond the Solar System. We report the first measurement of the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma) that differs significantly from the meteoritic value of 2.59. The Rb/K elemental abundance ratio for the cloud also is lower than that seen in meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values indicates that the interstellar 85Rb abundance in this direction is lower than the Solar System abundance. We attribute the lower abundance to a reduced contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are consistent with much less r-process synthesis for the solar neighborhood compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter

    Toiling with the Pāli Canon

    Get PDF
    The paper describes the preparation of a Buddhist corpus in the Middle Indo-Aryan language Pāli, which is available only in a flat TEI format, for content-based analysis. This task includes transforming the file into a hierarchical TEI P5 representation, followed by tokenisation (including sandhi resolution), lemmatisation, and POS tagging

    Oscillator Strengths for B-X, C-X, and E-X Transitions in Carbon Monoxide

    Get PDF
    Band oscillator strengths for electronic transitions in CO were obtained at the Synchrotron Radiation Center of the University of Wisconsin-Madison. Our focus was on transitions that are observed in interstellar spectra with the Far Ultraviolet Spectroscopic Explorer; these transitions are also important in studies of selective isotope photodissociation where fractionation among isotopomers can occur. Absorption from the ground state (X ^1Sigma^+ v'' = 0) to A ^1Pi (v'= 5), B ^1Sigma^+ (v' = 0, 1), C ^1Sigma^+ (v' = 0, 1), and E ^1Pi (v' = 0) was measured. Fits to the A - X (5, 0) band, whose oscillator strength is well known, yielded the necessary column density and excitation temperature. These parameters were used in a least-squares fit of the observed profiles for the transitions of interest to extract their band oscillator strengths. Our oscillator strengths are in excellent agreement with results from recent experiments using a variety of techniques. This agreement provides the basis for a self-consistent set of f-values at far ultraviolet wavelengths for studies of interstellar (and stellar) CO.Comment: 22 pages, 3 figures, ApJS (in press

    What is the Total Deuterium Abundance in the Local Galactic Disk?

    Get PDF
    Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and IMAPS instruments, reveal an unexplained very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with the molecular hydrogen rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4 (1 sigma) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma) depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure

    Potential Variations in the Interstellar N I Abundance

    Full text link
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph observations of the weak interstellar N I doublet at 1160 Angstroms toward 17 high-density sight lines [N(Htot)>=10^21 cm^-2]. When combined with published data, our results reveal variations in the fractional N I abundance showing a systematic deficiency at large N(Htot). At the FUSE resolution (~20 km s^-1), the effects of unresolved saturation cannot be conclusively ruled out, although O I at 1356 Angstroms shows little evidence of saturation. We investigated the possibility that the N I variability is due to the formation of N_2 in our mostly dense regions. The 0-0 band of the c'_4 ^1Sigma^+_u - X ^1Sigma^+_g transition of N_2 at 958 Angstroms should be easily detected in our FUSE data; for 10 of the denser sight lines, N_2 is not observed at a sensitivity level of a few times 10^14 cm^-2. The observed N I variations are suggestive of an incomplete understanding of nitrogen chemistry. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, which is operated for NASA by the Johns Hopkins University under NASA contract NAS 5-32985, and the NASA/ESA Hubble Space Telescope, obtained from the Multimission Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    Deuterium Toward Two Milky Way Disk Stars: Probing Extended Sight Lines with the Far Ultraviolet Spectroscopic Explorer

    Get PDF
    We have carried out an investigation of the abundance of deuterium along two extended sight lines through the interstellar medium (ISM) of the Galactic disk. The data include Far Ultraviolet Spectroscopic Explorer (FUSE) observations of HD 195965 (B1Ib) and HD 191877 (B0V), as well as Space Telescope Imaging Spectrograph (STIS) observations of HD 195965. The distances to HD 195965 and HD 191877, derived from spectroscopic parallax, are 794+/-200 pc and 2200+/-550 pc, respectively, making these the longest Galactic disk sight lines in which deuterium has been investigated with FUSE. The higher Lyman lines clearly show the presence of deuterium. We use a combination of curve of growth analyses and line profile fitting to determine the DI abundance toward each object. We also present column densities for OI and NI toward both stars, and HI measured from Ly-alpha absorption in the STIS spectrum of HD 195965. The D/H ratios along these sight lines are lower than the average value found with FUSE for the local interstellar medium (37 to 179 pc from the Sun). These observations lend support to earlier detections of variation in D/H over distances greater than a few hundred pc. The D/H and O/H values measured along these sight lines support the expectation that the ISM is not well mixed on distances of ~1000 pc.Comment: 32 pages, 18 figures. Abridged abstract. Accepted for publication in ApJ. Uses emulateapj5.st
    • 

    corecore