122 research outputs found

    The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression

    Get PDF
    The large-conductance K+ channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking

    Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels

    Get PDF
    Stroke is a long-term disability and one of the leading causes of death. However, no successful therapeutic intervention is available for the majority of stroke patients. In this study, we explored a traditional Chinese medicine Baifuzi (Typhonium giganteum Engl.). We show, at first, that the ethanol extract of Baifuzi exerts neuroprotective effects against brain damage induced by transient global or focal cerebral ischemia in rats and mice. Second, the extract activated large-conductance Ca2+-activated K+ channel (BKCa) channels, and BKCa channel blockade suppressed the neuroprotection of the extract, suggesting that the BKCa is the molecular target of Baifuzi. Third, Baifuzi cerebroside (Baifuzi-CB), purified from its ethanol extract, activated BKCa channels in a manner similar to that of the extract. Fourth, the stress axis hormone-regulated exon (STREX) domain of the BKCa channel directly interacted with Baifuzi-CB, and its deletion suppressed channel activation by Baifuzi-CB. These results indicate that Baifuzi-CB activated the BKCa channel through its direct interaction with the STREX domain of the channel and suggests that Baifuzi-CB merits exploration as a potential therapeutic agent for treating brain ischemia

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin

    Calcium-Activated Potassium Channels BK and IK1 Are Functionally Expressed in Human Gliomas but Do Not Regulate Cell Proliferation

    Get PDF
    Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance (BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1 inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target actions

    JPN Guidelines for the management of acute pancreatitis: severity assessment of acute pancreatitis

    Get PDF
    This article addresses the criteria for severity assessment and the severity scoring system of the Ministry of Health and Welfare of Japan; now the Japanese Ministry of Health, Labour, and Welfare (the JPN score). It also presents data comparing the JPN score with the Acute Physiology and Chronic Health Evaluation (APACHE) II score and the Ranson score, which are the major measuring scales used in the United States and Europe. The goal of investigating these scoring systems is the achievement of earlier diagnosis and more appropriate and successful treatment of severe or moderate acute pancreatitis, which has a high mortality rate. This article makes the following recommendations in terms of assessing the severity of acute pancreatitis

    Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets

    Get PDF
    Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen’s d = −0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future
    corecore