329 research outputs found
Extragalactic Results from the Infrared Space Observatory
More than a decade ago the IRAS satellite opened the realm of external
galaxies for studies in the 10 to 100 micron band and discovered emission from
tens of thousands of normal and active galaxies. With the 1995-1998 mission of
the Infrared Space Observatory the next major steps in extragalactic infrared
astronomy became possible: detailed imaging, spectroscopy and
spectro-photometry of many galaxies detected by IRAS, as well as deep surveys
in the mid- and far- IR. The spectroscopic data reveal a wealth of detail about
the nature of the energy source(s) and about the physical conditions in
galaxies. ISO's surveys for the first time explore the infrared emission of
distant, high-redshift galaxies. ISO's main theme in extragalactic astronomy is
the role of star formation in the activity and evolution of galaxies.Comment: 106 pages, including 17 figures. Ann.Rev.Astron.Astrophys. (in
press), a gzip'd pdf file (667kB) is also available at
http://www.mpe.mpg.de/www_ir/preprint/annrev2000.pdf.g
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Parent-reported health care expenditures associated with autism spectrum disorders in Heilongjiang province, China
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine the health expenses incurred by families with children with autism spectrum disorder (ASD) and those expenses' relation to total household income and expenditures.</p> <p>Methods</p> <p>In this cross-sectional study, health care expenditure data were collected through face-to-face interviews. Expenses included annual costs for clinic visits, medication, behavioral therapy, transportation, and accommodations. Health care costs as a percentage of total household income and expenditures were also determined. The participants included 290 families with ASD children who were treated at the Children Development and Behavior Research Center, Harbin Medical University, China.</p> <p>Results</p> <p>Families with ASD children from urban and rural areas had higher per-capita household expenditures by 60.8% and 74.7%, respectively, compared with provincial statistics for 2007. Behavioral therapy accounted for the largest proportion of health expenses (54.3%) for ASD children. In 19.9% of urban and 38.2% of rural families, health care costs exceeded the total annual household income. Most families (89.3% of urban families; 88.1% of rural families) in that province reported higher health care expenditures than the provincial household average.</p> <p>Conclusion</p> <p>For families with ASD children, the economic burden of health care is substantially higher than the provincial average.</p
QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross
Increased modern farming of superior types of the oil palm, Elaeis guineensis Jacq., which has naturally efficient oil biosynthesis, has made it the world’s foremost edible oil crop. Breeding improvement is, however, circumscribed by time and costs associated with the tree’s long reproductive cycle, large size and 10–15 years of field testing. Marker-assisted breeding has considerable potential for improving this crop. Towards this, quantitative trait loci (QTL) linked to oil yield component traits were mapped in a high-yield population. In total, 164 QTLs associated with 21 oil yield component traits were discovered, with cumulative QTL effects increasing in tandem with the number of QTL markers and matching the QT+ alleles for each trait. The QTLs confirmed all traits to be polygenic, with many genes of individual small effects on independent loci, but epistatic interactions are not ruled out. Furthermore, several QTLs maybe pleiotropic as suggested by QTL clustering of inter-related traits on almost all linkage groups. Certain regions of the chromosomes seem richer in the genes affecting a particular yield component trait and likely encompass pleiotropic, epistatic and heterotic effects. A large proportion of the identified additive effects from QTLs may actually arise from genic interactions between loci. Comparisons with previous mapping studies show that most of the QTLs were for similar traits and shared similar marker intervals on the same linkage groups. Practical applications for such QTLs in marker-assisted breeding will require seeking them out in different genetic backgrounds and environments
Resilience to Disturbance Despite Limited Dispersal and Self-Recruitment in Tropical Barrel Sponges: Implications for Conservation and Management
While estimates of connectivity are important for effective management, few such estimates are available for reef invertebrates other than for corals. Barrel sponges are one of the largest and most conspicuous members of the coral reef fauna across the Indo-Pacific and given their large size, longevity and ability to process large volumes of water, they have a major role in reef functioning. Here we used a panel of microsatellite markers to characterise the genetic structure of two barrel sponge species, Xestospongia testudinaria and a currently undescribed Xestospongia species. We sampled across seven populations in the Wakatobi Marine National Park, SE Sulawesi (Indonesia) spanning a spatial scale of approximately 2 to 70 km, and present the first estimates of demographic connectivity for coral reef sponges. Genetic analyses showed high levels of genetic differentiation between all populations for both species, but contrasting patterns of genetic structuring for the two species. Autocorrelation analyses showed the likely dispersal distances of both species to be in the order of 60 and 140 m for Xestopongia sp. and Xestospongia testudinaria, respectively, which was supported by assignment tests that showed high levels of self-recruitment (>80%). We also found consistently high inbreeding coefficients across all populations for both species. Our study highlights the potential susceptibility of barrel sponges to environmental perturbations because they are generally long-lived, slow growing, have small population sizes and are likely to be reliant on self-recruitment. Surprisingly, despite these features we actually found the highest abundance of both barrel sponge species (although they were generally smaller) at a site that has been severely impacted by humans over the last fifty years. This suggests that barrel sponges exhibit environmental adaptation to declining environmental quality and has important implications for the management and conservation of these important reef species. © 2014 Bell et al
Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains
Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors
QTL Analysis of Shading Sensitive Related Traits in Maize under Two Shading Treatments
During maize development and reproduction, shading stress is an important abiotic factor influencing grain yield. To elucidate the genetic basis of shading stress in maize, an F2:3 population derived from two inbred lines, Zhong72 and 502, was used to evaluate the performance of six traits under shading treatment and full-light treatment at two locations. The results showed that shading treatment significantly decreased plant height and ear height, reduced stem diameter, delayed day-to-tassel (DTT) and day-to-silk (DTS), and increased anthesis-silking interval (ASI). Forty-three different QTLs were identified for the six measured traits under shading and full light treatment at two locations, including seven QTL for plant height, nine QTL for ear height, six QTL for stem diameter, seven QTL for day-to-tassel, six QTL for day-to-silk, and eight QTL for ASI. Interestingly, three QTLs, qPH4, qEH4a, and qDTT1b were detected under full sunlight and shading treatment at two locations simultaneously, these QTL could be used for selecting elite hybrids with high tolerance to shading and high plant density. And the two QTL, qPH10 and qDTS1a, were only detected under shading treatment at two locations, should be quit for selecting insensitive inbred line in maize breeding procedure by using MAS method
Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community
Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition
Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants
[EN] Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers are amongst the most common markers of choice for studies of diversity and relationships in horticultural species. We have used 11 SSR and 35 SNP markers derived from transcriptome sequencing projects to fingerprint 48 accessions of a collection of brinjal (Solanum melongena), gboma (S. macrocarpon) and scarlet (S. aethiopicum) eggplant complexes, which also include their respective wild relatives S. incanum, S. dasyphyllum and S. anguivi. All SSR and SNP markers were polymorphic and 34 and 36 different genetic fingerprints were obtained with SSRs and SNPs, respectively. When combining both markers all accessions but two had different genetic profiles. Although on average SSRs were more informative than SNPs, with a higher number of alleles, genotypes and polymorphic information content (PIC), and expected heterozygosity (He) values, SNPs have proved highly informative in our materials. Low observed heterozygosity (Ho) and high fixation index (f) values confirm the high degree of homozygosity of eggplants. Genetic identities within groups of each complex were higher than with groups of other complexes, although differences in the ranks of genetic identity values among groups were observed between SSR and SNP markers. For low and intermediate values of pair-wise SNP genetic distances, a moderate correlation between SSR and SNP genetic distances was observed (r(2) = 0.592), but for high SNP genetic distances the correlation was low (r(2) = 0.080). The differences among markers resulted in different phenogram topologies, with a different eggplant complex being basal (gboma eggplant for SSRs and brinjal eggplant for SNPs) to the two others. Overall the results reveal that both types of markers are complementary for eggplant fingerprinting and that interpretation of relationships among groups may be greatly affected by the type of marker used.This work has been funded by European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (Grant AGL2015-64755-R from MINECO/FEDER). Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral contract (Programa FPI de la UPV-Subprograma 1/2013 call). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva-Formacion programme (FJCI-2015-24835).Gramazio, P.; Prohens Tomás, J.; Borras, D.; Plazas Ávila, MDLO.; Herraiz García, FJ.; Vilanova Navarro, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica. 213(264):1-18. https://doi.org/10.1007/s10681-017-2057-3S118213264Acquadro A, Barchi L, Gramazio P et al (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE 12:e0180774. https://doi.org/10.1371/journal.pone.0180774Adeniji O, Kusolwa P, Reuben S (2013) Morphological descriptors and micro satellite diversity among scarlet eggplant groups. Afr Crop Sci J 21(1):37–49Aguoru C, Omoigui L, Olasan J (2015) Molecular characterization of Solanum species (Solanum aethiopicum complex; Solanum macrocarpon and Solanum anguivi) using multiplex RAPD primers. J Plant Stud 4:27–34. https://doi.org/10.5539/jps.v4n1p27Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218Ashrafi H, Hill T, Stoffel K et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom 13:1–15. https://doi.org/10.1186/1471-2164-13-571Augustinos AA, Petropoulos C, Karasoulou V et al (2016) Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors. Span J Agric Res 14:e0710. https://doi.org/10.5424/sjar/2016144-9020Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4615-2381-9Blanca J, Cañizares J, Roig C et al (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom 12:104. https://doi.org/10.1186/1471-2164-12-104Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331Bukenya Z, Carasco J (1994) Biosystematic study of Solanum macrocarpon—S. dasyphyllum complex in Uganda and relations with Solanum linnaeanum. East Afr Agric For J 59(3):187–204Castillo A, Budak H, Varshney RK et al (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97. https://doi.org/10.1186/1471-2229-8-97Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608. https://doi.org/10.1007/s00122-008-0923-zCoates BS, Sumerford DV, Miller NJ et al (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564. https://doi.org/10.1093/jhered/esp028D’Agostino N, Golas T, van de Geest H et al (2013) Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genom 14:356. https://doi.org/10.1186/1471-2164-14-356Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of Vegetables. Studium Press, Houston, pp 257–322Davey J, Hohenlohe P, Etter P et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012De Barba M, Miquel C, Lobréaux S et al (2016) High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour 17(3):492–507. https://doi.org/10.1111/1755-0998.12594Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. https://doi.org/10.1038/nrg1348Felsenstein, J (2007). PHYLIP (Phylogeny Inference Package) Version 3.67. Department of Genome Sciences, University of Washington, Seattle, WA, USAFernandez-Silva I, Whitney J, Wainwright B (2013) Microsatellites for next-generation ecologists: a post-sequencing bioinformatics pipeline. PLoS ONE 8(2):e55990Filippi CV, Aguirre N, Rivas JG et al (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:52. https://doi.org/10.1186/s12870-014-0360-xFischer MC, Rellstab C, Leuzinger M et al (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69. https://doi.org/10.1186/s12864-016-3459-7Furini A, Wunder J (2004) Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theor Appl Genet 108:197–208. https://doi.org/10.1007/s00122-003-1439-1Gadaleta A, Giancaspro A, Zacheo S et al (2011) Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet Resour 9:243–246. https://doi.org/10.1017/S147926211100030XGe H, Liu Y, Jiang M et al (2013) Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci Hortic 162:71–75. https://doi.org/10.1016/j.scienta.2013.08.004Gonzaga ZJ (2015) Evaluation of SSR and SNP Markers for Molecular Breeding in Rice. Plant Breed Biotechnol 3:139–152. https://doi.org/10.9787/PBB.2015.3.2.139Goodwin S, McPherson J, McCombie W (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351Gramazio P, Blanca J, Ziarsolo P et al (2016) Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genom 17:300. https://doi.org/10.1186/s12864-016-2631-4Grover A, Sharma PC (2014) Development and use of molecular markers: past and present. Crit Rev Biotechnol 8551:1–13. https://doi.org/10.3109/07388551.2014.959891Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367. https://doi.org/10.1371/journal.pone.0001367Hess JE, Matala AP (2011) Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Mol Ecol Resour. https://doi.org/10.1111/j.1755-0998.2010.02958.xHighton R (1993) The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data. Mol Phylogenet Evol 2:337–343Hirakawa H, Shirasawa K, Miyatake K, Nunome, T et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660. https://doi.org/10.1093/dnares/dsu027Hong CP, Piao ZY, Kang TW et al (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356.Hu J, Wang L, Li J (2011) Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plant 55:577–580. https://doi.org/10.1007/s10535-011-0129-0Isshiki S, Iwata N, Khan MMR (2008) ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci Hortic 117:186–190. https://doi.org/10.1016/j.scienta.2008.04.003Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371. https://doi.org/10.1007/s00122-007-0570-9Kalia RK, Rai MK, Kalia S et al (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259. https://doi.org/10.1016/j.tig.2006.03.005Kaushik P, Prohens J, Vilanova S et al (2016) Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front Plant Sci 7:677Kim C, Guo H, Kong W et al (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE 8:e57039Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778. https://doi.org/10.1073/pnas.95.18.10774Lester RN, Daunay MC (2003) Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. Schriften zu Genetischen Ressourcen 22:137–152Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 433–456Lester RN, Jaeger PML, Bleijendaal-Spierings BHM et al (1990) African eggplants-a review of collecting in West Africa. Plant Genet Resour Newsl 81:17–26Levin R, Myers N, Bohs L (2006) Phylogenetic relationships among the ‘spiny solanums’ (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93(1):157–169Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239Li YC, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220. https://doi.org/10.1038/214637b0Martínez-Arias R, Calafell F, Mateu E et al (2001) Sequence variability of a human pseudogene. Genome Res 11:1071–1085. https://doi.org/10.1101/gr.167701Meyer RS, Karol KG, Little DP et al (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701. https://doi.org/10.1016/j.ympev.2012.02.006Muñoz-Falcón J, Prohens J, Vilanova S, Nuez F (2009) Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Ann Appl Biol 154(3):453–465Nandha PS, Singh J (2014) Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers. Plant Breed 133:28–35. https://doi.org/10.1111/pbr.12118Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771Nunome T, Negoro S, Kono I et al (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153. https://doi.org/10.1007/s00122-009-1116-0Page R (2001) TreeView. Glasgow University, GlasgowPeakall P, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28:2537–2539Pessarakli M, Dris R (2004) Pollination and breeding of eggplants. J Food Agric Environ 2:218–219Plazas M, Andújar I, Vilanova S et al (2014) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front. Plant Sci 5:318Ranil R, Niran H, Plazas M et al (2015) Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci Hortic 193:174–181. https://doi.org/10.1016/j.scienta.2015.07.030Sakata Y, Lester RN (1997) Chloroplast DNA diversity in brinjal eggplant (Solanum melongena L.) and related species. Euphytica 97:295–301. https://doi.org/10.1023/A:1003000612441Sakata Y, Nishio T, Matthews PJ (1991) Chloroplast DNA analysis of eggplant (Solanum melongena) and related species for their taxonomic affinity. Euphytica 55:21–26Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214. https://doi.org/10.1186/1471-2148-13-214Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161Sneath P, Sokal R (1973) Numerical taxonomy. The principles and practice of numerical classification. W H Freeman Limited, San FranciscoStàgel A, Portis E, Toppino L et al (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genom 9:357. https://doi.org/10.1186/1471-2164-9-357Sunseri F, Polignano GB, Alba V et al (2010) Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 4:231–241Syfert MM, Castañeda-Álvarez NP, Khoury CK et al (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651. https://doi.org/10.3732/ajb.1500539Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. https://doi.org/10.1007/s00122-002-1031-0Thomson MJ, Alfred J, Dangl J et al (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212. https://doi.org/10.9787/PBB.2014.2.3.195Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017Tumbilen Y, Frary A, Daunay MC, Doganlar S (2011) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Biol 35:125–136. https://doi.org/10.3906/biy-0906-57van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299. https://doi.org/10.1007/s00122-009-1256-2Van Tassell CP, Smith TPL, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252. https://doi.org/10.1038/nmeth.1185Varshney R, Graner A, Sorrells M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. https://doi.org/10.1016/j.plantsci.2007.08.010Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30:647–660. https://doi.org/10.1007/s11032-011-9650-2Vilanova S, Hurtado M, Cardona A (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR markers. Not Bot Horti Agrobo Cluj-Napoca 42:59–65Vogel JP, Gu YQ, Twigg P et al (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195. https://doi.org/10.1007/s00122-006-0285-3Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193. https://doi.org/10.1111/boj.12053Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the Orient. Taxon 59:49–56. https://doi.org/10.2307/27757050Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420. https://doi.org/10.2307/2406450Xiao M, Zhang Y, Chen X et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134. https://doi.org/10.1016/j.jbiotec.2013.04.004Yan J, Yang X, Shah T et al (2010) High-throughput SNP genotyping with the Goldengate assay in maize. Mol Breed 25:441–451. https://doi.org/10.1007/s11032-009-9343-2Yang X, Xu Y, Shah T et al (2011) Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica 139:1045–1054. https://doi.org/10.1007/s10709-011-9606-9Yu J, Zhang Z, Zhu C et al (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63. https://doi.org/10.3835/plantgenome2008.09.0009Zhan L, Paterson I, Fraser B (2016) MEGASAT: automated inference of microsatellite genotypes from sequence data. Ecol Resour, Mol. https://doi.org/10.1111/1755-0998.1256
- …