19,401 research outputs found
The Close Binary Fraction of Dwarf M Stars
We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ~17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass
Active clearance control system for a turbomachine
An axial compressor is provided with a cooling air manifold surrounding a portion of the shroud, and means for bleeding air from the compressor to the manifold for selectively flowing it in a modulating manner axially along the outer side of the stator/shroud to cool and shrink it during steady state operating conditions so as to obtain minimum shroud/rotor clearance conditions. Provision is also made to selectively divert the flow of cooling air from the manifold during transient periods of operation so as to alter the thermal growth or shrink rate of the stator/shroud and result in adequate clearance with the compressor rotor
An Institutional Framework for Heterogeneous Formal Development in UML
We present a framework for formal software development with UML. In contrast
to previous approaches that equip UML with a formal semantics, we follow an
institution based heterogeneous approach. This can express suitable formal
semantics of the different UML diagram types directly, without the need to map
everything to one specific formalism (let it be first-order logic or graph
grammars). We show how different aspects of the formal development process can
be coherently formalised, ranging from requirements over design and Hoare-style
conditions on code to the implementation itself. The framework can be used to
verify consistency of different UML diagrams both horizontally (e.g.,
consistency among various requirements) as well as vertically (e.g.,
correctness of design or implementation w.r.t. the requirements)
A method to measure flag performance for the shipping industry
The subject of measuring the performance of registries has been a topic of policy discussions in recent years on the regional level due to the recast of the European Union (EU) port state control (PSC) directive which introduces incentives for flags which perform better. Since the current method used in the EU region entails some shortcomings, it has therefore been the subject of substantial scrutiny. Furthermore, the International Maritime Organization (IMO) developed a set of performance indicators which however lacks the ability to measure compliance as set out in one of its strategic directions towards fostering global compliance. In this article, we develop and test a methodology to measure flag state performance which can be applied to the regional or global level and to other areas of legislative interest (e.g. recognized organizations, Document of Compliance Companies). Our proposed methodology overcomes some of the shortcomings of the present method and presents a more refined, less biased approach of measuring performance. To demonstrate its usefulness, we apply it to a sample of 207,821 observations for a 3 year time frame and compare it to the best know current method in the industry.
Quantitative ultrasound and bone health
Copyright © 2013 Instituto Nacional de Salud PúblicaOpen Access journalThis review of quantitative ultrasound (QUS) and bone health uses the current literature to summarise the clinical and research effectiveness of QUS. QUS has been demonstrated to have the ability to predict fracture, particularly at the hip. However, the magnitude of prediction is fracture-site, measurement-site and device dependent. The correlations between dual X-ray absorptiometry (DXA) and bone mineral density (BMD) are weak to moderate, resulting in different subjects being identified as being at risk of fracture by the two different methods. QUS is sensitive to age and menopause-related changes and to clinical risk factors and lifestyle factors associated with osteoporosis. Whilst a limited ability of QUS to monitor therapeutic intervention has been demonstrated, this is still an area where it's poorer precision, in comparison to DXA, results in limited applicability. Whilst DXA remains the gold standard for the diagnosis of osteoporosis, QUS may be of use for the prediction of those at risk of future fracture in areas where there is limited availability of DXA
The classification of LANDSAT data for the Orlando, Florida, urban fringe area
Procedures used to map residential land cover on the Orlando, Florida, Urban fringe zone are detailed. The NASA Bureau of the Census Applications Systems Verification and Transfer project and the test site are described as well as the LANDSAT data used as the land cover information sources. Both single-date LANDSAT data processing and multitemporal principal components LANDSAT data processing are described. A summary of significant findings is included
Fractional Chern insulator edges and layer-resolved lattice contacts
Fractional Chern insulators (FCIs) realized in fractional quantum Hall
systems subject to a periodic potential are topological phases of matter for
which space group symmetries play an important role. In particular, lattice
dislocations in an FCI can host topology-altering non-Abelian topological
defects, known as genons. Genons are of particular interest for their potential
application to topological quantum computing. In this work, we study FCI edges
and how they can be used to detect genons. We find that translation symmetry
can impose a quantized momentum difference between the edge electrons of a
partially-filled Chern band. We propose {\it layer-resolved lattice contacts},
which utilize this momentum difference to selectively contact a particular FCI
edge electron. The relative current between FCI edge electrons can then be used
to detect the presence of genons in the bulk FCI. Recent experiments have
demonstrated graphene is a viable platform to study FCI physics. We describe
how the lattice contacts proposed here could be implemented in graphene subject
to an artificial lattice, thereby outlining a path forward for experimental
dectection of non-Abelian topological defects.Comment: 5+7 pages, 10 figures, v2: modified figure
- …
