196 research outputs found

    The Selfish Grandma Gene: The Roles of the X-Chromosome and Paternity Uncertainty in the Evolution of Grandmothering Behavior and Longevity

    Get PDF
    When considering inclusive fitness, it is expected that individuals will provide more care towards those with whom they are more closely related. Thus, if a selfish X-linked genetic element influenced care giving, we would expect care giving to vary with X-relatedness. Recent studies have shown that X-chromosome inheritance patterns may influence selection of traits affecting behavior and life-history. Sexually antagonistic (SA) zygotic drive could encourage individuals to help those with whom they are more likely to share genetic material at the expense of other relatives. We reanalyze previously reported data in light of this new idea. We also evaluate the effects of paternity uncertainty on SA-zygotic drive. Our evidence suggests that human paternal discrepancy is relatively low. Using published models, we find the effects of paternal discrepancy do not override opportunity for selection based on X-relatedness. Based on these results, longevity and grandmothering behaviors, including favoritism, may be more heavily influenced by selection on the X-chromosome than by paternity uncertainty

    Women’s Pregnancy Life History and Alzheimer’s Risk: Can Immunoregulation Explain the Link?

    Get PDF
    Background: Pregnancy is associated with improvement in immunoregulation that persists into the geriatric phase. Impaired immunoregulation is implicated in Alzheimer’s disease (AD) pathogenesis. Hence, we investigate the relationship between pregnancy and AD. Methods: Cross-sectional cohort of British women (N = 95). Cox proportional hazards modeling assessed the putative effects of cumulative months pregnant on AD risk and the mutually adjusted effects of counts of first and third trimesters on AD risk. Results: Cumulative number of months pregnant, was associated with lower AD risk (β = −1.90, exp(β) = 0.15, P = .02). Cumulative number of first trimesters was associated with lower AD risk after adjusting for third trimesters (β = −3.83, exp(β) = 0.02, P \u3c .01), while the latter predictor had no significant effect after adjusting for the former. Conclusions: Our observation that first trimesters (but not third trimesters) conferred protection against AD is more consistent with immunologic effects, which are driven by early gestation, than estrogenic exposures, which are greatest in late gestation. Results may justify future studies with immune biomarkers

    A female signal reflects MHC genotype in a social primate.

    Get PDF
    BACKGROUND: Males from many species are believed to advertise their genetic quality through striking ornaments that attract mates. Yet the connections between signal expression, body condition and the genes associated with individual quality are rarely elucidated. This is particularly problematic for the signals of females in species with conventional sex roles, whose evolutionary significance has received little attention and is poorly understood. Here we explore these questions in the sexual swellings of female primates, which are among the most conspicuous of mammalian sexual signals and highly variable in size, shape and colour. We investigated the relationships between two components of sexual swellings (size and shape), body condition, and genes of the Major Histocompatibility Complex (MHC) in a wild baboon population (Papio ursinus) where males prefer large swellings. RESULTS: Although there was no effect of MHC diversity on the sexual swelling components, one specific MHC supertype (S1) was associated with poor body condition together with swellings of small size and a particular shape. The variation in swelling characteristics linked with the possession of supertype S1 appeared to be partially mediated by body condition and remained detectable when taking into account the possession of other supertypes. CONCLUSIONS: These findings suggest a pathway from immunity genes to sexual signals via physical condition for the first time in females. They further indicate that mechanisms of sexual selection traditionally assigned to males can also operate in females.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The Cool ISM in Elliptical Galaxies. II. Gas Content in the Volume - Limited Sample and Results from the Combined Elliptical and Lenticular Surveys

    Full text link
    We report new observations of atomic and molecular gas in a volume limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low luminosity E and SO galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the AGN feedback and merger paradigms might offer explanations for differences in detection rates, and might also point towards an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early type galaxies. Atomic gas comprises a greater fraction of the cool ISM in more gas rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.Comment: 37 pages, including 4 tables and 12 figures. Accepted for publication in the Astrophysical Journa

    Evolutionary trade-off between vocal tract and testes dimensions in howler monkeys.

    Get PDF
    Males often face a trade-off between investments in precopulatory and postcopulatory traits [1], particularly when male-male contest competition determines access to mates [2]. To date, studies of precopulatory strategies have largely focused on visual ornaments (e.g., coloration) or weapon morphology (e.g., antlers, horns, and canines). However, vocalizations can also play an important role in both male competition and female choice [3-5]. We investigated variation in vocal tract dimensions among male howler monkeys (Alouatta spp.), which produce loud roars using a highly specialized and greatly enlarged hyoid bone and larynx [6]. We examined the relative male investment in hyoids and testes among howler monkey species in relation to the level of male-male competition and analyzed the acoustic consequences of variation in hyoid morphology. Species characterized by single-male groups have large hyoids and small testes, suggesting high levels of vocally mediated competition. Larger hyoids lower formant frequencies, probably increasing the acoustic impression of male body size and playing a role analogous to investment in large body size or weaponry. Across species, as the number of males per group increases, testes volume also increases, indicating higher levels of postcopulatory sperm competition, while hyoid volume decreases. These results provide the first evidence of an evolutionary trade-off between investment in precopulatory vocal characteristics and postcopulatory sperm production.We are grateful to Alexander Sliwa, Catalina Gomez, Robert Wallace, Michael Plavkan, Zelinda Braga Hirano, and Julio Cesar de Souza, Jr. for sharing data, Andrew Kitchener (National Museums Scotland) for loaning whole animal specimens, Michaela Gumpenberger and Jaap Saers for support with CT and MRI, Carolyn M. Crockett, Mariana Raño, and La Senda Verde Animal Refuge Bolivia for providing photographs and videos, Nadja Kavcik for help with the figures, and Dieter Lukas for help with statistical analyses. J.C.D. was funded by a Cambridge Humanities Research Grant. W.T.F. acknowledges support of ERC Advanced Grant SOMACCA (#230604) and Austrian Science Fund (FWF) grant W1234-G17.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cub.2015.09.02

    The Cool ISM in S0 Galaxies. I. A Survey of Molecular Gas

    Full text link
    Lenticular galaxies remain remarkably mysterious as a class. Observations to date have not led to any broad consensus about their origins, properties and evolution, though they are often thought to have formed in one big burst of star formation early in the history of the Universe, and to have evolved relatively passively since then. In that picture, current theory predicts that stellar evolution returns substantial quantities of gas to the interstellar medium; most is ejected from the galaxy, but significant amounts of cool gas might be retained. Past searches for that material, though, have provided unclear results. We present results from a survey of molecular gas in a volume-limited sample of field S0 galaxies, selected from the Nearby Galaxies Catalog. CO emission is detected from 78 percent of the sample galaxies. We find that the molecular gas is almost always located inside the central few kiloparses of a lenticular galaxy, meaning that in general it is more centrally concentrated than in spirals. We combine our data with HI observations from the literature to determine the total masses of cool and cold gas. Curiously, we find that, across a wide range of luminosity, the most gas rich galaxies have about 10 percent of the total amount of gas ever returned by their stars. That result is difficult to understand within the context of either monolithic or hierarchical models of evolution of the interstellar medium.Comment: 26 pages of text, 15 pages of tables, 10 figures. Accepted for publication in the Astrophysical Journa

    From polyps to pixels: understanding coral reef resilience to local and global change across scales

    Get PDF
    Abstract Context Coral reef resilience is the product of multiple interacting processes that occur across various interacting scales. This complexity presents challenges for identifying solutions to the ongoing worldwide decline of coral reef ecosystems that are threatened by both local and global human stressors. Objectives We highlight how coral reef resilience is studied at spatial, temporal, and functional scales, and explore emerging technologies that are bringing new insights to our understanding of reef resilience. We then provide a framework for integrating insights across scales by using new and existing technological and analytical tools. We also discuss the implications of scale on both the ecological processes that lead to declines of reefs, and how we study those mechanisms. Methods To illustrate, we present a case study from Kāneʻohe Bay, Hawaiʻi, USA, linking remotely sensed hyperspectral imagery to within-colony symbiont communities that show differential responses to stress. Results In doing so, we transform the scale at which we can study coral resilience from a few individuals to entire ecosystems. Conclusions Together, these perspectives guide best practices for designing management solutions that scale from individuals to ecosystems by integrating multiple levels of biological organization from cellular processes to global patterns of coral degradation and resilience
    corecore