177 research outputs found

    Professional Skills and Competence for Safe and Effective Procedural Sedation in Children: Recommendations Based on a Systematic Review of the Literature

    Get PDF
    Objectives. To investigate which skills and competence are imperative to assure optimal effectiveness and safety of procedural sedation (PS) in children and to analyze the underlying levels of evidence. Study Design and methods. Systematic review of literature published between 1993 and March 2009. Selected papers were classified according to their methodological quality and summarized in evidence-based conclusions. Next, conclusions were used to formulate recommendations. Results. Although the safety profiles vary among PS drugs, the possibility of potentially serious adverse events and the predictability of depth and duration of sedation define the imperative skills and competence necessary for a timely recognition and appropriate management. The level of effectiveness is mainly determined by the ability to apply titratable PS, including deep sedation using short-acting anesthetics for invasive procedures and nitrous oxide for minor painful procedures, and the implementation of non-pharmacological techniques. Conclusions. PS related safety and effectiveness are determined by the circumstances and professional skills rather than by specific pharmacologic characteristics. Evidence based recommendations regarding necessary skills and competence should be used to set up training programs and to define which professionals can and cannot be credentialed for PS in children

    Moderate-to-deep sedation technique, using propofol and ketamine, allowing synchronised breathing for magnetic resonance high-intensity focused ultrasound (MR-HIFU) treatment for uterine fibroids: a pilot study

    Get PDF
    BACKGROUND: Magnetic resonance high-intensity focused ultrasound (MR-HIFU) treatment for uterine fibroids is rapidly gaining popularity as a treatment modality. This procedure is generally uncomfortable, painful, and requires minimal or absence of movement and an MR-HIFU synchronised breathing pattern of the patient. Procedural sedation and analgesia protocols have become the standard practice in interventional radiology departments worldwide. The aim of this study was to explore if a sedation regimen with low-dose propofol and ketamine performed by trained non-medical sedation practitioners could result in relief of discomfort for the patient and in adequate working conditions for MR-HIFU treatment for uterine fibroids. METHODS: In this study, conducted from August 2013 until November 2014, 20 patients were subjected to MR-HIFU treatment of uterine fibroids. Patients were deeply sedated using intravenous propofol and esketamine according to a standardised hospital protocol to allow synchronisation of the breathing pattern to the MR-HIFU. The quality of sedation for MR-HIFU and complications were recorded and analysed. The side effects of the sedation technique, the propofol and esketamine consumption rate, the duration of recovery, and patient satisfaction after 24 h were examined. RESULTS: A total of 20 female patients (mean age 42.4 [range 32-53] years) were enrolled. Mean propofol/esketamine dose was 1309 mg/39.5 mg (range 692-1970 mg/ 23.6-87.9 mg). Mean procedure time was 269 min (range 140-295 min). Application of the sedation protocol resulted in a regular breathing pattern, which could be synchronised with the MR-HIFU procedures without delay. The required treatment was completed in all cases. There were no major adverse events. Hypoxemia (oxygen desaturation <92%) and hallucinations were not observed. CONCLUSIONS: The use of a specific combination of IV propofol and esketamine for procedural sedation and analgesia reduced the discomfort and pain during MR-guided HIFU treatments of uterine fibroids. The resulting regular breathing pattern allowed for easy synchronisation of the MR-HIFU procedure. Based on our results, esketamine and propofol sedation performed by trained non-medical sedation practitioners is feasible and safe, has a low risk of major adverse events, and has a short recovery time, avoiding a session of general anaesthesia

    Integrated population models poorly estimate the demographic contribution of immigration

    Get PDF
    Estimating the contribution of demographic parameters to changes in population growth is essential for understanding why populations fluctuate. Integrated population models (IPMs) offer a possibility to estimate the contributions of additional demographic parameters, for which no data have been explicitly collected—typically immigration. Such parameters are often subsequently highlighted as important drivers of population growth. Yet, accuracy in estimating their temporal variation, and consequently their contribution to changes in population growth rate, has not been investigated. To quantify the magnitude and cause of potential biases when estimating the contribution of immigration using IPMs, we simulated data (using northern wheatear Oenanthe oenanthe population estimates) from controlled scenarios to examine potential biases and how they depend on IPM parameterization, formulation of priors, the level of temporal variation in immigration and sample size. We also used empirical data on populations with known rates of immigration: Soay sheep Ovis aries and Mauritius kestrel Falco punctatus with zero immigration and grey wolf Canis lupus in Scandinavia with near-zero immigration. IPMs strongly overestimated the contribution of immigration to changes in population growth in scenarios when immigration was simulated with zero temporal variation (proportion of variance attributed to immigration = 63% for the more constrained formulation and real sample size) and in the wild populations, where the true number of immigrants was zero or near-zero (kestrel 19.1%–98.2%, sheep 4.2%–36.1% and wolf 84.0%–99.2%). Although the estimation of the contribution of immigration in the simulation study became more accurate with increasing temporal variation and sample size, it was often not possible to distinguish between an accurate estimation from data with high temporal variation versus an overestimation from data with low temporal variation. Unrealistically, large sample sizes may be required to estimate the contribution of immigration well. To minimize the risk of overestimating the contribution of immigration (or any additional parameter) in IPMs, we recommend to: (a) look for evidence of variation in immigration before investigating its contribution to population growth, (b) simulate and model data for comparison to the real data and (c) use explicit data on immigration when possible

    Variance estimation for integrated population models

    Get PDF
    Abstract State-space models are widely used in ecology. However, it is well known that in practice it can be difficult to estimate both the process and observation variances that occur in such models. We consider this issue for integrated population models,which incorporate state-space models for population dynamics. To some extent, the mechanism of integrated population models protects against this problem, but it can still arise, and two illustrations are provided, in each of which the observation variance is estimated as zero. In the context of an extended case study involving data on British Grey herons, we consider alternative approaches for dealing with the problem when it occurs. In particular, we consider penalised likelihood, a method based on fitting splines and a method of pseudo-replication, which is undertaken via a simple bootstrap procedure. For the case study of the paper, it is shown that when it occurs, an estimate of zero observation variance is unimportant for inference relating to the model parameters of primary interest. This unexpected finding is supported by a simulation study

    Standardizing Clinical Trials Workflow Representation in UML for International Site Comparison

    Get PDF
    BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19
    corecore