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Abstract State-space models are widely used in ecology. However it is well known that in practice6

it can be difficult to estimate both the process and observation variances that occur in such models.7

We consider this issue for integrated population models, which incorporate state-space models for8

population dynamics. To some extent the mechanism of integrated population models protects against9

this problem, but it can still arise, and two illustrations are provided, in each of which the observation10

variance is estimated as zero. In the context of an extended case study involving data on British Grey11

herons we consider alternative approaches for dealing with the problem when it occurs. In particular12

we consider penalised likelihood, a method based on fitting splines and a method of pseudo replication,13

which is undertaken via a simple bootstrap procedure. For the case study of the paper it is shown that14

when it occurs, an estimate of zero observation variance is unimportant for inference relating to the15

model parameters of primary interest. This unexpected finding is supported by a simulation study.16
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1 Introduction to integrated population modelling using state-space models20

Different surveys of wild animals can produce separate data sets, each with information on common21

parameters in population dynamics models. Surveys might be undertaken to estimate survival or22

productivity, or produce time-series of counts, which are the consequence of the interplay between23

survival and productivity, and often arise from national censuses.24

Likelihoods describing productivity are frequently relatively straightforward, often based on bino-25

mial and related distributions, to describe count data on numbers of newborn individuals. Likelihoods26

describing survival typically arise in the analysis of capture-recapture data of different kinds, and27

are often based on multinomial distributions. More complex are likelihoods to describe census/count28

data, and an attractive framework for analysing such data is provided by state-space models. Here29

uncertainty is modelled in both a hidden stochastic process and in describing the observations made30

on the states of that process. This paper is devoted to investigating the estimation of these two types31

of variation.32

Integrated population modelling combines the information in different independent surveys by33

forming joint likelihoods, which are products of component likelihoods, one for each survey. We follow34

the approach of Besbeas et al. (2002) which is now widely used; see eg McCrea et al. (2010). A35

Bayesian approach is described by Brooks et al. (2004) and Chapter 11 of Kéry and Schaub (2012)36

provides a comprehensive overview. A useful survey of applications is given by Schaub and Abadi37

(2011). Technical issues, such as how to provide initial population values for analysing time series of38

abundance data, how to perform model selection and how to gauge model fit are described by Besbeas39

and Morgan (2011), Besbeas et al. (2015) and Besbeas and Morgan (2014) respectively. In the case40

of model selection, standard use of the Akaike Information Criterion can over fit the data; see also41

Bengtsson and Cavanaugh (2006). Besbeas and Morgan (2014) use a method of calibrated simulation42

for judging goodness of fit.43

Potential benefits of integrated population modelling (IPM) include improved precision of the44

estimates of common parameters, the estimation of parameters on which there is no direct information,45

and the coherent estimation of standard errors. Recent work is described by Chandler and Clark (2014)46

and Mazzetta et al. (2010), which includes relaxing the requirement that the different surveys need to47

be independent; see also Besbeas et al. (2009) and Abadi et al. (2010). We base the investigations of48

this paper on a single case study which has been used to illustrate a number of developments in the49

analysis of integrated data, and has a number of complex features that require appropriate description.50

However the work has wider implications in the estimation of population dynamics.51

The plan of the paper is as follows: Section 2 describes the case study, involving British Grey52

herons, and which is used throughout the paper; this section provides detail regarding integrated53

population modelling and how it operates. Section 3 describes how integrated population modelling54
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proceeds, and gives the details of how component likelihoods are constructed. Section 4 explains how55

process and observation/measurement variance estimation might be difficult when simple state-space56

models are fitted to time-series data alone. Section 5 demonstrates that although this is less of a57

problem in integrated population modelling, there can still be difficulties with the correct estimation58

of observation variance in this context. Three possible solutions are proposed and evaluated in Section59

6, and Section 7 provides a simulation study to investigate the wider implications of the findings.60

The paper ends with discussion and a recommendation in Section 8. An Appendix provides a short R61

program and additional figures are available at the Online Resource for the paper.62

2 Grey heron case study63

In the UK, survey information for estimating the demographic parameters of Grey herons, Ardea64

cinerea, is available at the British Trust for Ornithology. These birds nest in colonies, high up in65

trees, and as a result it is difficult to obtain access to nests and obtain reliable data on productivity.66

However there is a national heron census, which dates back to its inception in 1928, in which counts67

are made of what are judged to be active nests of breeding pairs, as opposed to individuals and there68

is also ring-recovery (MRR) data from birds ringed as chicks throughout the UK, which may be used69

to estimate annual survival probabilities. Guidance on taking the census is given at70

http://www.bto.org/volunteer-surveys/heronries-census/taking-part.71

Ringing is of chicks, and takes place when they are still in the nest.72

See http://app.bto.org/birdfacts/results/bob1220.htm for a summary of important features of73

the studies of grey herons in the UK. In this work we use the ring-recovery information from 1955-74

1997. Ring-recovery data are summarised by a table with each row corresponding to a year of ringing.75

Each year the number of birds ringed forms a multinomial index for the multinomial distribution76

which describes the numbers of herons reported dead that year from that cohort of ringed birds; see77

Chapter 4 of McCrea and Morgan (2014).78

The Grey heron census from 1928 to 1998 inclusive is illustrated in Figure 1. Early values appear to79

be rounded to at least the nearest 50, an issue that we do not resolve here, but which is one indication80

of the presence of measurement error in the values. For continuity with earlier analyses, it is this data81

set that we analyse in the paper.82

The ringed birds form a small fraction of the national population. Furthermore the ring-recovery83

information spans 43 of the 71 years of the census information in the study. Consequently the two84

data sets, of census and recovery information, may be regarded as independent, and we shall make85

that assumption throughout this work.86

[Fig. 1 about here.]87
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3 Integrated population modelling88

Models for the two data sets share common survival probabilities, and integrated population modelling89

exploits this feature. We use methods of classical statistical inference. Likelihoods are formed for the90

two component data sets and the product of these likelihoods is maximised to produce maximum-91

likelihood estimates for the complete set of model parameters. In practice therefore we set92

log(Lj) = log(Lr) + log(Lc), (1)

where Lj denotes the joint likelihood, Lr denotes the likelihood for the ring-recovery data, given below93

in Equation 2, and Lc denotes the likelihood for the census data. Note that similar approaches are to be94

found in fisheries stock assessment models, where there is also consideration of differential weighting of95

the components in the joint log likelihood; see Francis (2011). The model for the census data includes96

a productivity parameter, p, and although there is not a data set providing direct information on97

productivity, as a consequence of integrated population modelling we can estimate this parameter,98

along with an estimate of its standard error. In fact for Grey herons, Besbeas et al. (2002) assumed99

that productivity is constant, resulting in an estimate of productivity given by p̂ = 0.96(0.07). Here100

and throughout the paper we denote estimated standard errors by the terms in parentheses following101

the maximum-likelihood estimates. It is shown in Besbeas and Morgan (2012) how it is possible to102

formulate a complex, realistic structure for productivity, in which increases are triggered by drops in103

population size, relative to size thresholds, and we comment again on this feature later in the paper.104

3.1 Likelihood formation: ring-recovery data105

Suppose, in a T -year study, di,j individuals are reported dead at time tj , from a cohort of Ri individuals106

ringed as chicks at time ti, and let ui be the number of animals that are not recovered from the ith107

cohort, so that ui = Ri −
∑

j di,j . The probability corresponding to the di,j is denoted by pi,j , and108

we write qi = 1−
∑

j pi,j , i = 1, . . . , T . Making use of the assumption of independence of individuals109

between cohorts, the MRR data can be modelled by a product of multinomials, and the log-likelihood110

is given by111

log(Lr) = constant +

T
∑

i=1

T
∑

j=i+1

di,j log(pi,j) +

T
∑

i=1

uilog(qi). (2)

The pi,j are modelled in terms of annual survival and reporting probabilities. For illustration112

suppose that parameters do not vary with time, and let φℓ denote the annual survival probability of113

individuals in the ℓth year of life, ℓ = 1, . . . , a− 1, a+, and λ denote the probability that an individual114

which dies is reported dead. Thus there are a age groups, and a+ refers to all individuals in the ath115
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and older years of life. For example, for j ≤ a+, pi,j =
∏j−1

k=1 φk(1− φj−i+1)λ. However, probabilities116

will be time dependent in general (McCrea and Morgan 2014, p62).117

3.2 Likelihood formation: census data118

Census data form a time series that can be modelled by means of a state-space model (see also Pat-119

terson et al. (2017), who discuss the relationship with hidden Markov models, and the Kalman filter,120

and uses for modelling movement data). State-space models are based on two equations, a transition121

equation and an observation equation. In our application the states are discrete. The transition equa-122

tion describes how a population changes over time, through a Leslie matrix with elements which are123

functions of parameters of survival and productivity. The census itself is then assumed to result from124

observations made on the states of the underlying process. For further discussion, see King (2012),125

King (2014) and Newman et al. (2014).126

In the case of Grey herons, we assume that birds breed after the second year of life, and that the127

transition equation of the model has the general form128
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(3)

where Nr,t, 1 ≤ r ≤ a− 1 and Na+,t denote, respectively, the unknown numbers of female birds aged129

r-years and greater than (a − 1)-years at time t and the {ǫi,t} denote appropriate process errors,130

which are discussed below. For Grey herons, based on analysis of the ring-recovery data in Besbeas131

and Morgan (2012), we take a = 4.132

An important feature in integrated population modelling is that the variances of the process errors133

are not free parameters, to be estimated, which is frequently the case in modelling abundance data134

alone. Rather they have a particular structure resulting from the modelling: in their simplest forms,135

survival may correspond to binomial sampling, and recruitment due to productivity is assumed to136

follow from a Poisson distribution; see Besbeas et al. (2002). Thus corresponding to Equation 3, when137

a = 4 we have138
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Var(ǫ1,t) = pφ1(N2,t−1 +N3,t−1 +N4+,t−1)

Var(ǫ2,t) = φ2(1− φ2)N1,t−1

Var(ǫ3,t) = φ3(1− φ3)N2,t−1

Var(ǫ4+,t) = φ4+(1− φ4+)(N3,t−1 +N4+,t−1).

(4)

The first of these expressions corresponds to assuming a Poisson form for recruitment and the139

remaining result from the binomial model for survival.140

Grey herons are not thought to skip breeding in general, and so it is acceptable to equate counting141

nests to counting breeding females. The situation is different for longer lived birds, which do skip142

breeding. The observed counts, {yt}, are then given by the corresponding observation equation143

yt = (0, 1, 1, 1)(N1,t, N2,t, N3,t, N4+,t)
′ + ηt, (5)

where for all t we further assume that the observation error, ηt ∼ N(0, σ2), with the observation144

variance σ2, measuring the accuracy of the census, being a crucially important parameter to be145

estimated. Note that the normal distribution is justified as inactive nests might be counted in error,146

and in addition data might be rounded. As in the modelling of MRR data, parameters will be time-147

dependent in general.148

It is shown in Besbeas et al. (2002) how the Kalman filter can be simply used to produce an ap-149

proximate likelihood for census data, and an additional simplification is given in Besbeas et al. (2003),150

which is valuable if a component likelihood is constructed using a stand-alone computer package, such151

as Program MARK; see http://www.phidot.org/software/mark/docs/book/. The theory of the152

Kalman filter is based upon the assumption of normally distributed random variables, and in Besbeas153

et al. (2002) the Poisson and binomial forms are taken to be approximately normal. Typically obser-154

vations are sufficiently large to justify this, which is certainly true of the Grey heron data; see Figure155

1. The work of Brooks et al. (2004) provides a Bayesian analysis of integrated population models,156

which does not make use of the Kalman filter and the normality assumptions, and results there show157

how robust these normal approximations are, even for small population sizes. This conclusion is also158

supported by simulation studies such as those of Section 6. For further details of the Kalman filter,159

see Durbin and Koopman (2001), and for more discussion of integrated population modelling, see160

Chapter 12 of McCrea and Morgan (2014) and Chapter 9 of Newman et al. (2014).161

3.3 Parameter structure for the case study162

We can expect time variation in survival probabilities, productivity and the reporting probability, λ, of163

dead ringed birds, which has been confirmed by various analyses such as Besbeas and Morgan (2012).164

Here we shall assume constant productivity, a reporting probability that may be fully time dependent165
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or regressed logistically on time, and survival probabilities that may be constant, fully time-dependent166

or are each regressed logistically on a measure of winter severity, the number of frost days recorded at167

a central England location, wt; see Besbeas and Morgan (2012). The reason for this is that the heron168

feeds on aquatic food, and cold winters can result in frozen ponds, thereby reducing food availability;169

this is a particular problem for younger birds. Additionally, the reporting probability of dead ringed170

birds has been decreasing over time in the UK, explaining the need for temporal variation in λ.171

We give the notation for the model parameters in Table 1.172

[Table 1 about here.]173

3.4 Estimated correlation matrix for the case study174

[Table 2 about here.]175

We give in Table 2 the estimated correlation matrix after an integrated analysis of the heron176

data. A diffuse start has been used for the Kalman filter; see Besbeas and Morgan (2011). Although177

there is relevant discussion in Besbeas et al. (2002) from fitting a simpler model, we do not believe178

that such a table has been presented previously. We note the generally low values, in absolute terms,179

of the correlations, and in particular in the bottom row, where correlations relate the observation180

variance to the other model parameters. The largest absolute value in this row (0.2562) is indicated181

in bold face, and corresponds to the correlation with the slope of the first year survival regression.182

This is due to the fact that without regressing first-year survival upon the weather covariate, the183

model does not describe the data well, resulting in a larger estimate of σ. Also notable in the table184

are the high correlations, in absolute terms, shown in bold face, in the penultimate line of the table,185

corresponding to the productivity, p, being negatively correlated with the estimated intercepts of the186

survival probability regressions. This is due to the complete confounding of p and φ1 in the census187

likelihood, seen in Equation 3, and the correlations between the estimated intercepts of the survival188

probability regressions. We shall comment further on the implications of the low correlations between189

log(σ2) and the other parameters of Table 2 later in the paper.190

4 Apportioning variance correctly when fitting state-space models191

State-space models have been used for modelling abundance data alone, for simpler models than192

that presented in the last section. An illustration is provided by Dennis et al. (2006), who modelled193

abundance on the logarithmic scale. When only abundance data are being modelled, a difficulty may194

arise from the need to distinguish the two types of variances in the model: the process variances and195

the observation variances. See also Freckleton et al. (2006) for more discussion of this feature. Accurate196

determination of the observation variance requires replication of time series, corresponding to more197
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than a single independent observation at each time. This point has been made by Dennis et al. (2010),198

and is investigated further by Knape et al. (2013). Replication can arise from measurements being199

made on different segments of the population, and an illustration of this is provided by Tavecchia200

et al. (2009), where separate censuses are made of lambs and male and female adult Soay sheep,201

Ovis aries. However typically in such a case different observation variances are associated with each202

different type of census observation, so that this does not provide the desired replication. As pointed203

out by Dennis et al. (2010), in practice replicated surveys of wild animals are generally hard to carry204

out. See Chapter 11 of McCrea and Morgan (2014) and Newman et al. (2014) for more discussion of205

state-space modelling.206

For integrated population modelling there are two protections against the difficulty of correctly207

allocating variance between process and observation. The first results from the nature of the modelling,208

as the census data are not being analysed in isolation. In the heron illustration, for example, the209

ring-recovery likelihood produces information on annual survival probabilities, which stabilises the210

estimation and assists in the correct estimation of the two types of variance in integrated modelling.211

The second protection arises from the structural specification of the process variances, illustrated in212

Equation 4, which prevents them from being free parameters, as discussed above.213

The motivation for this paper has been our experience that there can still be difficulties with214

correctly estimating the state-space model variances in integrated population modelling. We now give215

two illustrations in the next section, where the problem arises with the estimation of observation216

variance.217

5 Two examples of complexity in integrated population models218

Integrated population modelling opens up possibilities for making models more realistic, and one219

example of this has been mentioned already, when Besbeas and Morgan (2012) introduced a complex220

structure for modelling heron productivity. We give here two instances of such elaboration giving rise221

to unrealistic, zero estimates of observation variance. The context is again models for the heron data.222

5.1 Overdispersion223

We first consider an important case of adding overdispersion to both the binomial survival process of224

the state-space model and also to the ring-recovery model, using the heron example as an illustration.225

Extra-binomial variation might arise for several reasons, such as individual heterogeneity, the failure226

to include relevant covariates, etc. We can do this in various ways, and for the ring-recovery model227

we introduce a beta, Beta(α, β), distribution, with probability density function given by228

f(φ) =
Γ(α)Γ(β)

Γ(α+ β)
φα−1(1− φ)β−1, 0 ≤ φ ≤ 1.
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This is done for just the adult survival probability φ4+ ; the motivation here arises from the fact229

that the age class for the oldest individuals spans multiple ages and individuals may survive with230

different survival probabilities, for example due to senescence; see for example Burnham and Rexstad231

(1993) and Pollock and Raveling (1982). However overdispersion may be due to a range of features232

not included in the simpler models, such as temporal and spatial variation in the environment . It233

is useful to reparameterise the beta distribution in terms of its mean, µ = α/(α + β), and precision234

parameter θ = 1/(α+β), which allows µ to be time-dependent or depend on covariates. The resulting235

cell probabilities for the recovery matrix are then as shown in Table 3, for the illustrative case a = 2236

and time-varying reporting probability λ.237

[Table 3 about here.]238

The parameter θ is an over-dispersion index, and setting θ = 0 removes the overdispersion. There239

are several ways to add overdispersion to a state-space model binomial variance, including, for example,240

a simple scaling of Var(ǫ4+,t). Here we use the expression of Equation 6, taken from Besbeas et al.241

(2009):242

Var(ǫ4+,t) = (N3,t−1 +N4+,t−1)µ(1− µ)

{

1 +
θ(N3,t−1 +N4+,t−1)

1 + θ

}

. (6)

When θ = 0 here the parameter µ reduces to φ4+ , and Equation 6 reduces to Equation 4. Thus243

the parameter θ appears in both likelihood components of the integrated model in Equation 1. The244

introduction of the new parameter θ which enters this process variance prevents the variance from245

being fully determined by the other model parameters, and can result in boundary estimation of the246

observation variance. This is demonstrated in the profile log-likelihoods illustrated in Figure 2.247

In general, for brevity we specify integrated models using forms such as ccct/t/c. Here the first four248

letters correspond to how the survival probabilities are modelled, in order of age, the fifth corresponds249

to describing the reporting probability and the sixth determines how productivity is described; c indi-250

cates a constant parameter, t indicates full time dependence, with a separate parameter for each year,251

and v indicates that the relevant parameter is regressed on a covariate. For the survival probabilities,252

the covariate dependence we consider is logistic dependence on the winter weather covariate, while253

in the case of λ, the only covariate dependence considered is logistic dependence on time. We can254

see from Figure 2 that as model complexity increases, while the estimate of θ steadily decreases, the255

more dramatic effect is upon the estimate of σ, which ends up, for the vvvv/v/c model, on the σ = 0256

boundary. It is not necessary to have overdispersion in the ring-recovery model for this feature to257

arise, and in fact performance is worse if θ is estimated from census data alone; related results are258

not shown here. We note also that in principle all four process variances in Equation 4, corresponding259

to the four age classes in the model, could be over dispersed, which might result in more potential260

boundary estimates.261
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[Fig. 2 about here.]262

Due to the consistency of maximum-likelihood estimators, increasing the length of the time series263

will reduce the incidence of boundary estimates for the observation variance. We can see this from the264

simulated results of Table 4, however it is noticeable that for the complex model case very long time265

series would be necessary in order to reduce appreciably the incidence of boundary estimates.266

[Table 4 about here.]267

5.2 Time-variation268

Zero estimates of observation variance can also arise without overdispersion in the model, but with pro-269

cess model flexibility. This is demonstrated in Table 5 for a range of models involving time-dependent270

parameters. Shown in the table is the maximum-likelihood estimate of σ2, and we can see that several271

models result in the estimate σ̂ = 0.272

[Table 5 about here.]273

In terms of AIC, the best model for the data has logistic weather covariate dependence of each of the274

survival probabilities and time dependence for the recovery and productivity parameters, vvvv/t/t,275

and also results in σ̂ = 0; results not provided here. In practical terms this boundary estimate is276

unrealistic and may suggest that the data are being over-fitted. As already observed above, it is277

tempting to add time-dependence to model parameters such as productivity, as has been done in a278

particular way by Besbeas and Morgan (2012), and this runs the risk of boundary estimation of the279

observation variance. In addition, Besbeas and Morgan (2012) demonstrate good fit of their model to280

the data.281

6 Alternative approaches to dealing with zero estimates of observation variance in282

integrated population models283

We present and investigate three alternative approaches.284

6.1 Plug in value for σ285

In the absence of an external data-based value, we examine alternative possibilities, based on fitting286

a cubic spline to the census data. In order to produce a simple check of their results, in Besbeas et287

al. (2002) the authors fitted a spline to the time series data and formed the standard deviation of288

the jacknife residuals, obtaining a value of 288, which they regarded as the same order of magnitude289

as σ̂ = 465(43), resulting from their integrated population modelling. This approach could always be290
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applied, and the resulting estimate of σ used in subsequent analysis. However it is over simplistic, as291

the spline simply treats the time series of census values as a sequence without structure, in particular292

without underlying process variability. Furthermore, the plug-in approach might result in conservative293

error estimation for the other model parameters, though simulation results later in Section 6 suggest294

that this is not an important issue. See also Francis (2011).295

6.2 Penalised likelihood296

Another approach that might be adopted is to penalise the log likelihood for the census data, in order297

for the likelihood maximisation to avoid the boundary σ = 0. Here one simply adds αh(σ) to the log298

likelihood for suitable penalty parameter α > 0 and penalty function h(σ); see for example Wang and299

Lindsay (2005). This is equivalent to using an informed prior distribution on σ in a Bayesian analysis300

of the problem. We demonstrate the use of this approach in Figures 3 and 4, respectively for the two301

cases where we assume that θ = 0 and θ > 0, where the model is vvvv/v/c. Penalising the likelihood302

works well, but suffers from the need to decide on a suitable function for h(σ), and how to choose α:303

we simply used the logarithmic function for h(σ).304

Thus instead of the joint likelihood Lj we maximised the penalised log likelihood given by305

log(Lp
j ) = log(Lr) + log(Lc) + αlog(σ). (7)

Other penalty functions were also investigated, with similar conclusions resulting.306

[Fig. 3 about here.]307

[Fig. 4 about here.]308

From Figure 3 we can see that when there is no assumption of overdispersion the effect of increas-309

ing α is primarily to increase the estimate of σ, and the remaining parameter estimates are largely310

unchanged. For this model there is no boundary estimation, and the effect on estimating σ is to be311

expected, from Equation 7. It is interesting to observe the behaviour in Figure 4 when α increases.312

Increasing the penalty is seen to increase the influence of the ring-recovery data. An important gen-313

eral conclusion which might be drawn is that the parameters of interest are stable with respect to the314

choice of α. A natural approach to choosing α is to use cross validation (Green and Silverman 1994,315

p30). However this approach is time consuming, and in this application it gives α = 0, as demonstrated316

by Figure 1 in the Online Resource for the paper. Therefore we shall not investigate this approach317

further in the simulation experiments reported in Section 6.318

In the next section we revisit the observation that what is needed in order to estimate σ well, even319

in the complex cases that we have considered, is replicated census data. So that ideally what we seek320

is to augment Equation 5 with321

ỹt = (0, 1, 1, 1)(N1,t, N2,t, N3t,t, N4+,t)
′ + η̃t, (8)
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where η̃t is independent of and with the same distribution as ηt.322

6.3 Pseudo replication323

We have found, for the heron data, and also for other similar ecological time series that after first-order324

differencing there remains little structure in the series. This is an interesting finding, and one which325

suggests that the first-order Markov modelling that we employ is appropriate for these data. It also326

supports the use of pseudo replication.327

As the census data are clearly non-stationary, standard bootstrap approaches for time series are328

inappropriate; a review of such methods is provided by Gonçalves and Politis (2011). Shown in Figure329

1 are four alternative pseudo replicates of the census data. These are obtained in an ad hoc fashion,330

by at each appropriate time, ie., apart from the first and last, selecting a value observed at either331

the current, previous or next time, each with probability 1/3; see also eg, Rice (1984). This approach332

can be extended to include the observed data at other neighbouring time points; see for example the333

results of Figure 2 in the Online Resource for the paper, where neighbouring points which are two334

time points before and after the current time point are also included. For stationary time series this335

approach would not change expectations. However in general it induces a correlation between the real336

data and the pseudo replicate at each time point. It is easy to show that this correlation decreases337

with increasing observation variance, in accordance with intuition, and also increases with the serial338

covariances of the time series. We can see, in comparison with Figure 1, the extra variation that results339

from sampling from 5 alternatives as compared with just sampling from 3. We have found that after340

first-order differencing the simple pseudo replicated series, based on just three values at each time341

point, has the appearance of a first-order moving average series, as one might expect. The pseudo342

replicates are used to augment Equation 5, as in Equation 8.343

We start by testing the use of pseudo replication when there is no boundary estimate of the344

observation variance, σ2. The model fitted in Table 6 is vvvv/v/c, without overdispersion. We see345

from Table 6 that the main change as a result of replication is the reduction in the estimate of the346

standard error of σ̂. As a consequence of the low correlations between σ̂ and all the other model347

parameter estimators, seen in Table 2, this is to be expected.348

[Table 6 about here.]349

In Table 7 we present results for when there is heterogeneity present in the model vvvv/v/c.350

Adding overdispersion in fact improves the fit of the model to the data. We compare the use of 3 and351

5 neighbouring values in the replication. The results from using pseudo replicates are very good. We352

can see from Table 7 that the primary effect of using more points for the pseudo replication lies in353

increasing the estimate of σ2, which is to be expected, and also in reducing its estimate of standard354



Variance estimation for integrated population models 13

error, which is also as one might expect. As with using penalised likelihood, we find that the main355

effect of pseudo replication is on the estimate of σ and its standard error.356

[Table 7 about here.]357

A referee has observed that other possibilities for pseudo replication could be considered. For358

instance, the model could just be fitted to all data replicated for each year prior and after the actual359

year. We have not considered the properties of such a scheme.360

7 Simulation361

In order to compare the methods, and explore the wider relevance of the results from the observed362

data, we analyse simulated data based on the fitted heron models. We shall vary the amount of363

overdispersion (θ = 0, 0.03, 0.0553, 0.07), the size of the measurement error (log(σ2) = 10, 11, 12.258)364

and the amount of ring-recovery data in the joint analysis (complete, 50%, 25% and 10%). Remaining365

parameter values are given in Table 1. There were 200 replications for each parameter combination.366

The reduction of the MRR data by 90% results in a major loss of MRR information, and the resulting367

table of recorded deaths is very sparse. For brevity we only present a small, representative sample of368

extensive results.369

First we present in Table 8 root mean square error (RMSE) results from one of the cases for when370

there is no overdispersion, and no boundary estimates for σ.371

[Table 8 about here.]372

What we see from Table 8 is an improvement in estimation from moving from MRR only to IPM,373

and this is especially marked for the reduced MRR case, as expected; we see that estimating σ using374

pseudo replication increases some RMSEs slightly in (a), due to the fact that the census data no375

longer follow the model exactly, though that is not generally the case in (b), and that plugging in376

estimates for σ has little effect. We consider this last feature to be a consequence of the low correlations377

between the estimator of σ and the other estimators in Table 2. However it is also a matter of using378

an appropriate value, and using very large values for σ has the effect of diminishing the contribution379

of the census data (results not shown).380

In Table 9 we present the results from one of the cases when there is overdispersion: θ = 0.07,381

focussing on the 38 instances out of the 200 simulations taken which resulted in boundary estimates382

in each of cases (a) and (b). Note that the RMSE for σ from integrated population modelling is383

necessarily relatively small, due to the fact that the observation variance is estimated as zero in these384

cases and there is no variance contribution.385

Again, the table shows the improvement that arises from integrated modelling, and how that386

varies, in a sensible way, with respect to the thinning of the ring-recovery data, despite the boundary387
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estimation. The performance of pseudo replication for estimating σ is seen to depend on the amount388

of ring-recovery data present, performance diminishing as that information is reduced. However re-389

maining parameter estimates are remarkably stable.390

Regarding estimating observation variance when there is no boundary estimate, relevant histograms391

are provided in Figures 3 and 4 in the Online Resource for the paper. We can see that using the spline392

approach can result in large overestimation, due to the fact that there is no modelling of the census393

data, and thus the variance estimated using the spline accounts for both types of variation, process394

and observation variability. In fact in results not shown here we see this overestimation increased when395

we add overdispersion to the simulations (θ > 0). The overestimation of σ is a function of the value396

of σ2 used in the simulations, with increased overestimation corresponding to smaller σ2 used. This is397

due to the proportionally greater effect of the process variance when the observation error is smaller.398

For the particular cases investigated we found that plugging in half of the σ2 value estimated using399

the spline approach performed well. We see also that the joint analysis provides good estimates of the400

observation variance, and that the addition of a single pseudo replicate results in a more positively401

skewed distribution of estimates of observation variance.402

[Table 9 about here.]403

8 Conclusion404

Naturally, the conclusions we draw are based on just the one case study considered, and the simulations405

based upon that. One might expect results to depend upon the relative strength of information in the406

two data sets being analysed. As one check of this we have repeated analyses using 50%, 75% and407

90% thinning of the ring-recovery information and obtained broadly similar conclusions. Additionally,408

for pseudo replication we have only presented information for where there was only a single pseudo409

replicate, but the effect of taking multiple replicates has also been considered. Results are as expected,410

and it appears that only single replication is needed, to ensure that σ̂ > 0.411

The primary finding of this investigation of integrated population modelling is that the estimates of412

parameters of primary interest which arise when the observation variance is estimated as zero appear413

to be reliable. This is counter intuitive, and in particular is in contrast to the findings of de Valpine and414

Hastings (2002), de Valpine and Hilborn (2005), Knape and Korner-Nieveergelt (2015) and Maunder415

et al. (2015) in the context of working just with time series data of population abundances.416

Should an estimate of observation variance be required when we obtain σ = 0, then it is simple417

to use what results from use of splines, perhaps in conjunction with the estimate from using pseudo418

replication. However the value obtained might be regarded as an upper bound.419
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9 Appendix422

Here we give the short R program for fitting a cubic spline, using cross validation, and evaluating the423

standard deviation of the jacknife residuals. In the program x is a vector of the census years and y is424

a vector of the census values.425

426

fit <- smooth.spline(x,y,CV=TRUE) # smooth spline fit427

res <- (fit$yin - fit$y)/(1-fit$lev) # jacknife residuals428

sigma <- sqrt(var(res)) # estimate standard deviation429

430

431
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2 Boundary estimation when modelling the heron data using overdispersion: profile log518
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black dotted lines are the maximum-likelihood estimates using the recovery data alone,527

where these are available. In this case the model is vvvv/v/c, and there is no overdis-528
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Fig. 1 Examples of pseudo replication of the heron census data. The real data are shown in blue, in common in each
of the four panels, (a)–(d), and four pseudo replicates are given in red. The pseudo replicates, ỹt, t = 2, . . . , T − 1, are
obtained by selecting at random a value at each time that is the observed value at that time, yt, or the preceding time,
yt−1, or the following time, yt+1, each with equal probability. Each panel presents a different pseudo-replicate of the
census data.
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Fig. 2 Boundary estimation when modelling the heron data using overdispersion: profile log likelihoods with respect
to σ and θ. The indicated contours of the log-likelihood are χ2

2(5%)/2 below the maximum value. The models fitted
are: (a) cccc/v/c; (b) vvcc/v/c; (c) vvvc/v/c; (d) vvvv/v/c. The maximum-likelihood estimate of (θ, σ) is marked with
‘×’. The best model in terms of AIC is vvvv/v/c, with the boundary estimate for σ as shown.
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Fig. 3 The effect of the value of the penalty scaling parameter α in penalised likelihood estimation; using all of the
MRR data. The blue lines provide the maximum-likelihood estimates of the parameters, and the red lines provide 95%
confidence intervals. The black dotted lines are the maximum-likelihood estimates using the recovery data alone, where
these are available. In this case the model is vvvv/v/c, and there is no overdispersion. Estimates tend to the MRR
values as α increases.
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Fig. 4 The effect of the value of the penalty scaling parameter α in penalised likelihood estimation; using all of the
MRR data. The blue lines provide the maximum-likelihood estimates of the parameters, and the red lines provide 95%
confidence intervals. The black dotted lines are the maximum-likelihood estimates using the recovery data alone, where
available. In this case the model is vvvv/v/c, and there is overdispersion.
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a single pseudo replication (IPM with pseudorep), and of plugging in various multiples574

of the estimated value of σ obtained from fitting a spline, σ̃, for selected parameters.575

This is done twice, (a) for when we use the full MRR data and (b) for when we use a576

random 10% of the MRR data. Note that (a) and (b) result from different simulation577

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32578
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9 Root mean square error results (RMSEs), all multiplied by 1000, from fitting model579

vvvv/v/c with σ = e10/2 = 148.41 and overdispersion, with θ = 0.07. Separately for580

(a) and (b), which arise from different simulation runs, results are only for the 38 cases581

out of 200 simulations undertaken when there were boundary estimates for IPM. We582

compare the results of just analysing the recovery data alone (MRR only), of using583

integrated population modelling (IPM), of using integrated population modelling with584

a single pseudo replication (IPM with pseudorep), and of plugging in various multiples585

of the estimated value of σ obtained from fitting a spline, σ̃, and also for the true value,586

σ = 148.41, for selected parameters. This is done twice, (a) for when we use the full587

MRR data and (b) for when we use a random 10% of the MRR data. . . . . . . . . . 33588
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Table 1 Parameter notation and values used to generate the simulated data in Section 6 of the paper. In an obvious
notation to indicate time dependence of the parameters, we have logit(φ1,t) = β0 + βwt, logit(φ2,t) = γ0 + γwt,
logit(φ3,t) = δ0 + δwt, logitφ4+,t = ζ0 + ζwt, and logit(λt) = ν0 + νt. Here wt is a measure of winter temperature: see

text. Three alternatives for σ2 and four for θ are considered. Note that all of the parameter values are the estimates
obtained from fitting the real data; see Table 6.

parameter value
β0 -0.188
β -0.023
γ0 0.385
γ -0.018
δ0 0.889
δ -0.018
ζ0 1.360
ζ -0.011
ν0 -2.027
ν -0.832

log p -0.085
log σ2 {10,11,12.258}

θ {0, 0.03, 0.0553, 0.07}



26 TABLES

β0 1

β -0.0398 1

γ0 0.1067 -0.0233 1

γ -0.0165 -0.0888 -0.0418 1

δ0 0.0818 -0.0160 0.0974 0.0297 1

δ -0.0249 -0.1192 -0.0315 -0.1558 -0.2022 1

ζ0 0.1349 -0.1476 0.1432 -0.0530 0.1604 -0.0501 1

ζ -0.0430 -0.2308 -0.0571 -0.3714 -0.0495 -0.2846 -0.1567 1

ν0 0.1227 -0.0275 0.0993 -0.0105 0.0884 -0.0182 0.1460 -0.0276 1

ν -0.0658 -0.0174 -0.0505 0.0073 -0.0424 0.0067 -0.0393 0.0002 -0.1668 1

log p -0.4830 0.1176 -0.5313 0.0434 -0.4561 0.0867 -0.7779 0.0990 -0.1964 0.0803 1

log σ2 -0.0181 -0.2562 -0.0049 0.0319 0.0093 0.0334 0.0061 0.1044 0.0003 0.0058 0.0026 1

β0 β γ0 γ δ0 δ ζ0 ζ ν0 ν log p log σ2

Table 2 Estimated correlation matrix for integrated population modelling of Grey heron data. Those values shown in
bold face are discussed in the text. The parameter notation used is given in Table 1.
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Year of recovery

1 2 3 4

1 (1− φ1)λ1 φ1(1− µ)λ2 φ1
µ

1+θ
(1− µ)λ3 φ1

µ(µ+θ)
(1+θ)(1+2θ)

(1− µ)λ4

2 (1− φ1)λ2 φ1(1− µ)λ3 φ1
µ

1+θ
(1− µ)λ4

3 (1− φ1)λ3 φ1(1− µ)λ4

Table 3 Multinomial cell probabilities, pi,j , i = 1, . . . , 3, j = 1, . . . , 4, for ring-recovery data assuming overdispersion
where, for illustration, a = 2.
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Model cccc/v/c Model vvvv/v/c

θ θ

n 0.01 0.03 0.04 0.01 0.03 0.04

51 2 11 22 40 118 144

71 2 10 28 31 114 145

91 1 4 23 29 103 137

111 1 4 10 13 97 133

Table 4 A demonstration of the effect of increasing time-series sample size, n, on the frequency of boundary estimates
of observation variance. The simple model here corresponds to model cccc/v/c, and the complex model has the form
vvvv/v/c. Shown is the number of times the zero-variance boundary was encountered for the measurement variance out
of 500 replications in each case. The true value of observation standard deviation was taken to be σ = e8.9/2 = 85.63.
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Model σ̂2

tccc/t/c 0.0

ctcc/t/c 0.0

cctc/t/c 238.2

ccct/t/c 39.5

cccc/t/t 17.0

ttcc/t/c 0.0

tctc/t/c 0.0

tcct/t/c 0.0

tccc/t/t 16.5

cttc/t/c 0.0

ctct/t/c 0.0

ctcc/t/t 17.4

cctt/t/c 0.0

cctc/t/t 0.0

ccct/t/t 0.0

Table 5 A demonstration of how time-variation in parameters can result in an estimated zero observation error. In all
cases there is time variation of reporting probability. The first five models have one other instance of time variation and
for the remaining models there is one further instance of time variation.
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No replication With replication

parameter estimate se estimate se

β0 -0.1880 0.0478 -0.1854 0.0480

β -0.0232 0.0048 -0.0188 0.0043

γ0 0.3851 0.0731 0.3878 0.0736

γ -0.0184 0.0061 -0.0177 0.0059

δ0 0.8888 0.1036 0.8907 0.1055

δ -0.0182 0.0088 -0.0182 0.0089

ζ0 1.3604 0.0877 1.3566 0.0894

ζ -0.0114 0.0051 -0.0120 0.0050

ν0 -2.0275 0.0256 -2.0275 0.0256

ν -0.8321 0.0461 -0.8339 0.0462

log p -0.0850 0.0781 -0.0906 0.0789

log σ2 12.2583 0.1884 12.2221 0.1353

Table 6 A comparison between the analysis of the Grey heron data with and without the use of pseudo replication,
when there is no heterogeneity in the model, and no boundary estimate of observation variance. The labelling of the
parameters is the same as in Table 2. In the pseudo replication case we present averages of 20 separate simulations.
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No Replication Replication with 3 values Replication with 5 values

parameter estimate se estimate se estimate se

β0 -0.1711 0.0486 -0.1742 0.0486 -0.1738 0.0488

β -0.0213 0.0038 -0.0228 0.0043 -0.0217 0.0047

γ0 0.4106 0.0743 0.4099 0.0745 0.4094 0.0751

γ -0.0216 0.0058 -0.0177 0.0060 -0.0163 0.0061

δ0 0.9306 0.1054 0.9243 0.1061 0.9240 0.1070

δ -0.0233 0.0087 -0.0194 0.0088 -0.0172 0.0088

ζ0 1.3251 0.1002 1.3413 0.1004 1.3420 0.1018

ζ -0.0171 0.0049 -0.0126 0.0051 -0.0085 0.0054

ν0 -2.8954 0.1722 -3.1561 0.2155 -3.1760 0.2588

ν -0.8312 0.0462 -0.8330 0.0463 -0.8350 0.0464

log θ -2.0194 0.0261 -2.0206 0.0260 -2.0206 0.0260

log p -0.0942 0.0917 -0.1104 0.0925 -0.1178 0.0951

log σ2 -13.3313 – 10.7247 0.1540 11.4949 0.1487

Table 7 A comparison between the analysis of the Grey heron data using model vvvv/v/c with no replication and
with a single replicate based on 3 or 5 neighbouring values when there is heterogeneity in the model. In both replicate
cases we present averages of 20 separate simulations. Variation between simulations was small. Standard errors for the
case of no replication, when there is a boundary estimate, are obtained for the other parameters using an appropriate
singular-value decomposition approach; (Searle 1982, p. 318).This is the case illustrated in panel (d) of Figure 2 . The
resulting estimated standard errors can be expected to be conservative.
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(a): using all the MRR data

RMSE × 1000

method β0 β γ0 γ log p σ

MRR only 492 50 802 73 - -

IPM 492 43 798 62 787 40520

IPM with pseudorep 495 42 798 62 811 43876

Plug σ̃2 492 43 799 62 791 -

Plug σ̃2/2 493 43 798 62 787 -

Plug 3σ̃2/2 492 44 800 63 794 -

(b): using 10 % of the MRR data

RMSE × 1000

method β0 β γ0 γ log p σ

MRR only 4539 162 5772 259 - -

IPM 2727 98 3831 197 5201 43901

IPM with pseudorep 2429 95 3431 213 4675 42752

Plug σ̃2 2774 98 3890 197 5341 -

Plug σ̃2/2 2462 103 3496 202 4718 -

Plug 3σ̃2/2 3042 100 4189 201 5835 -

Table 8 Root mean square error results (RMSEs), all multiplied by 1000, from fitting model vvvv/v/c with σ =
e12.258/2 = 458.97 and no overdispersion, so that θ = 0. There were no boundary estimates for σ by the IPM method in
the 200 simulations undertaken. We compare the results of just analysing the recovery data alone (MRR only), of using
integrated population modelling (IPM), of using integrated population modelling with a single pseudo replication (IPM
with pseudorep), and of plugging in various multiples of the estimated value of σ obtained from fitting a spline, σ̃, for
selected parameters. This is done twice, (a) for when we use the full MRR data and (b) for when we use a random 10%
of the MRR data. Note that (a) and (b) result from different simulation runs.
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(a): using all the MRR data

RMSE × 1000

method β0 β γ0 γ θ log p σ

MRR only 698 54 842 75 858 - -

IPM 605 44 820 69 220 1060 148412

IPM with pseudorep 600 48 813 68 269 967 242942

Plug σ̃2 614 50 842 69 335 967 -

Plug σ̃2/2 610 48 836 68 269 978 -

Plug 3σ̃2/2 616 51 845 70 362 962 -

Plug 148.412 606 45 825 68 173 1023 -

(b): using 10 % of the MRR data

RMSE × 1000

method β0 β γ0 γ θ log p σ

MRR only 1690 161 3158 225 1572 - -

IPM 1619 91 2767 197 1564 2748 148412

IPM with pseudorep 1652 116 2867 192 1570 3793 201596

Plug σ̃2 1581 96 2742 198 1557 2835 -

Plug σ̃2/2 1591 97 2760 195 1561 2915 -

Plug 3σ̃2/2 1567 98 2738 197 1556 2729 -

Plug 148.41 1612 95 2756 193 1562 2811 -

Table 9 Root mean square error results (RMSEs), all multiplied by 1000, from fitting model vvvv/v/c with σ =
e10/2 = 148.41 and overdispersion, with θ = 0.07. Separately for (a) and (b), which arise from different simulation runs,
results are only for the 38 cases out of 200 simulations undertaken when there were boundary estimates for IPM. We
compare the results of just analysing the recovery data alone (MRR only), of using integrated population modelling
(IPM), of using integrated population modelling with a single pseudo replication (IPM with pseudorep), and of plugging
in various multiples of the estimated value of σ obtained from fitting a spline, σ̃, and also for the true value, σ = 148.41,
for selected parameters. This is done twice, (a) for when we use the full MRR data and (b) for when we use a random
10% of the MRR data.


