107 research outputs found
Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H2 Production in 2D TiO2-Bronze Nanosheets ?
Ultrathin two-dimensional (2D) semiconductor nanosheets decorated with single atomic species (SAs) have recently attracted increasing attention due to their abundant surface-exposed reactive sites and maximum SAs binding capabilities thus lowering the catalyst cost, without sacrificing high performance for photocatalytic hydrogen (H2) production from water. Here, we present a strategy to prepare titanium dioxide-bronze nanosheets (TiO2-BNS) and H2-reduced TiO2 nanosheets (TiO2- HRNS) synthesized, characterized, and applied for photocatalytic H2 production. Surprisingly, black TiO2-HRNS show complete photo inactivity, while the TiO2-BNS-Pt0.05 nanohybrid shows excellent H2 production rate with a very low loading of 0.05 wt % Pt. TiO2-BNS-Pt0.05 presents around 10 and 99 times higher photocatalytic rate than pristine TiO2-BNS under solar and 365 nm UV-LED light irradiation, respectively. Due to the 2D morphology and the presence of abundant coordinating sites, the successful formation of widely dispersed Pt SAs was achieved. Most excitingly, the in situ formation of surface-exposed defect sites (Ti3+) was observed for TiO2-BNS under light illumination, suggesting their significant role in enhancing the H2 production rate. This self-activation and amplification behavior of TiO2-BNS can be extended to other 2D systems and applied to other photocatalytic reactions, thus providing a facile approach for fully utilizing noble metal catalysts via the successful formation of SAs
Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films
The performance of TiO2 nanomaterials in solar energy conversion applications can be tuned by means of thermal treatments in reducing atmospheres, which introduce defects (such as oxygen vacancies), allowing, for instance, a better charge transport or a higher photocatalytic activity. The characterization of these defects and the understanding of their role are pivotal to carefully engineer the properties of TiO2, and, among various methods, they have been addressed by photoluminescence (PL) spectroscopy. A definitive framework to describe the PL properties of TiO2, however, is still lacking. In this work, we report on the PL of nanostructured anatase TiO2 thin films, annealed in different atmospheres (oxidizing and reducing), and consider the effects of different excitation energies and different surrounding media on their PL spectra. A broad PL signal centered around 1.8–2.0 eV is found for all the films with UV excitation in air as well as in vacuum, while the same measurements in ethanol lead to a blueshift and to intensity changes in the spectra. On the other hand, measurements with different sub-bandgap excitations show PL peaking at 1.8 eV, with an intensity trend only dependent on the thermal treatment and not on the surrounding medium. The results of PL spectroscopy, together with electron paramagnetic resonance spectroscopy, suggest the critical role of oxygen vacancies and Ti3+ ions as radiative recombination centers. The complex relationship between thermal treatments and PL data in the explored conditions is discussed, suggesting the importance of such investigations for a deeper understanding on the relationship between defects in TiO2 and photoactivity
High Power Impulse Magnetron Sputtering of CIGS Thin Films for High Efficiency Thin Film Solar Cells
In this work CuIn1-xGaxSe2 (CIGS) thin films with three different values of x (0; 0.28; 1) were preparedby nonreactive sputtering of Cu, In and Ga in HiPIMS (High Power Impulse Magnetron Sputtering) orDC magnetron and subsequently selenized in an Ar+Se atmosphere. Optical emission spectroscopy(OES) was used to monitor some basic plasma parameters during sputtering of metallic precursors. CIGSthin film characteristics were measured using X-ray diffraction (XRD), scanning electron microscopy(SEM), Raman spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and other techniques
Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption
We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials
Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols
Generally adopted strategies for enhancing the photocatalytic activity are aimed at tuning the visible light response, the exposed crystal facets, and the nanocrystal shape. Here, we present a different approach for designing efficient photocatalysts displaying a substrate-specific reactivity upon defect engineering. The platinized, defective anisotropic brookite TiO2 photocatalysts are tested for alcohol photoreforming showing up to an 11-fold increase in methanol oxidation rate, compared with the pristine one, while presenting much lower ethanol or isopropanol specific oxidation rates. We demonstrate that the substrate- specific alcohol oxidation and hydrogen evolution reactions are tightly related, and when the former is increased, the latter is boosted. The reduced anisotropic brookite shows up to 18-fold higher specific photoactivity with respect to anatase and brookite with isotropic nanocrystals. Advanced in situ characterizations and theoretical investigations reveal that controlled engineering over oxygen vacancies and lattice strain produces large electron polarons hosting the substratespecific active sites for alcohol photo-oxidation
COUNTERFACTUALS AND THE ANALYSIS OF NECESSITY *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73782/1/j.1520-8583.2006.00108.x.pd
Are Counterpossibles Epistemic?
It has been suggested that intuitions supporting the nonvacuity of counterpossibles can be explained by distinguishing an epistemic and a metaphysical reading of counterfactuals. Such an explanation must answer why we tend to neglect the distinction of the two readings. By way of an answer, I offer a generalized pattern for explaining nonvacuity intuitions by a stand-and-fall relationship to certain indicative conditionals. Then, I present reasons for doubting the proposal: nonvacuists can use the epistemic reading to turn the table against vacuists, telling apart significant from spurious intuitions. Moreover, our intuitions tend to survive even if we clear-headedly intend a metaphysical reading
Hematene: A sustainable 2D conductive platform for visible-light-driven photocatalytic ammonia decomposition
The emerging class of 2D non-van der Waals (n-vdW) materials, including 2D iron oxides, possesses unique
properties and high applicability, making them attractive for various technological applications. However, the
synthesis of these materials through a scalable and eco-friendly method remains a challenge, as most known
chemical exfoliation processes require toxic organic solvents. In this study, we report a green synthesis of 2D
hematene (α-Fe2O3) using an ultrasound-supported exfoliation method of earth-abundant iron oxide ore in a pure
aqueous solution. The resulting hematene sheets, only a few nanometers thick, exhibit superior electrochemical
performance in terms of charge transfer processes, making them ideal for photocatalytic applications. By doping
a conductive hematene substrate with ruthenium, we demonstrate a synergistic effect for generating electrons
and holes under visible light irradiation. Using this approach, we successfully decomposed ammonia into
hydrogen and nitrogen, highlighting the potential of this novel class of environmentally-friendly photocatalysts
for clean energy production. Overall, our water-assisted scalable synthesis of hematene offers a promising
strategy for producing efficient and sustainable photocatalysts.Web of Science34art. no. 10188
Diferenciação analítica de vinhos-base para espumantes de duas regiões vitícolas do Rio Grande do Sul
Os objetivos deste trabalho foram caracterizar e diferenciar vinhos-base para espumante (cultivares ‘Chardonnay’ e ‘Pinot Noir’) provenientes da Serra do Nordeste e Serra do Sudeste do Rio Grande do Sul por meio de parâmetros físico-químicos e elementos minerais combinados com técnicas de análise multivariada. Foram analisados nove parâmetros físico-químicos (densidade, grau alcoólico, extrato seco total, extrato seco reduzido, acidez total, acidez volátil, acidez fixa, pH e açúcares redutores), por espectrofotometria no infravermelho, e 11 elementos minerais (Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na e Sr), por espectrometria de emissão ótica com plasma indutivamente acoplado (ICP-OES). Os elementos encontrados em maiores concentrações foram K, Mg e Ca e, em menores concentrações, Ba, Fe, Sr e Al. A Análise de Componentes Principais (ACP) mostrou que há uma tendência natural de separação entre os vinhos-base da Serra do Nordeste e Serra do Sudeste. Por meio da Análise Discriminante (AD) foram obtidos cinco descritores (Mg, Ca, Mn, pH e grau alcoólico) para os vinhos-base da cultivar ‘Chardonnay’ e seis descritores (B, Mn, Fe, Na, pH e acidez volátil) para a cultivar ‘Pinot Noir’, com capacidade de classificar as amostras de vinhos-base de acordo com a origem geográfica. Os elementos Mn e Mg parecem ser aqueles com maior capacidade de discriminação entre os vinhos-base da Serra do Nordeste e Serra do Sudeste.This research describes the base wines characterization and differentiation (cultivars Chardonnay and Pinot Noir) from Serra do Nordeste and Serra do Sudeste of Rio Grande do Sul by physicochemical parameters and mineral elements followed by multivariate statistical analysis. Nine physicochemical parameters (density, alcoholic content, total dry extract, reduced dry extract, total acidity, volatile acidity, fix acidity, pH and reducing sugars) were analyzed by infrared spectrofotometry and eleven mineral elements (Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na and Sr) by inductively coupled plasma optical emission spectrometry (ICP-OES). Elements K, Mg, and Ca were founded in higher concentrations and Ba, Fe, Sr, and Al were founded in lower ones. Principal Component Analysis (PCA) showed a natural separation tendency between wines from Serra do Nordeste and Serra do Sudeste. Five descriptors were obtained by Discriminant Analysis (DA) for base wines from cultivar Chardonnay (Mg, Ca, Mn, pH and alcoholic content) and six descriptors for base wines from cultivar Pinot Noir (B, Mn, Fe, Na, pH and volatile acidity). These descriptors were capable to classify samples of base wines according to geographical origin. Mn and Mg elements seem to be the elements with higher discrimination capacity between base wines from northwest Serra and Southeast Serra
- …