336 research outputs found

    Jupyter in Computational Science

    Get PDF
    The articles in this special section discusses the applications supported by the Jupyter Notebook. Before notebooks, a scientist working with Python code, for instance, might have used a mixture of script files and code typed into an interactive shell. The shell is good for rapid experimentation, but the code and results are typically transient, and a linear record of everything that was tried would be long and not very clear. The notebook interface combines the convenience of the shell with some of the benefits of saving and editing code in a file, while also incorporating results, including rich output, such as plots, in a document that can be shared with others. The Jupyter Notebook is used through a web browser. Although it is often run locally, on a desktop or a laptop, this design means that it can also be used remotely, so the computation occurs, and the notebook files are saved, on an institutional server, a high-performance computing facility or in the clo

    An open-source, stochastic, six-degrees-of-freedom rocket flight simulator, with a probabilistic trajectory analysis approach

    No full text
    Predicting the flight-path of an unguided rocket can help overcome unnecessary risks. Avoiding residential areas or a car-park can improve the safety of launching a rocket significantly. Furthermore, an accurate landing site prediction facilitates recovery. This paper introduces a six-degrees-of-freedom flight simulator for large unguided model rockets that can fly to altitudes of up to 13 km and then return to earth by parachute. The open-source software package assists the user with the design of rockets, and its simulation core models both the rocket flight and the parachute descent in stochastic wind conditions. Furthermore, the uncertainty in the input variables propagates through the model via a Monte Carlo wrapper, simulating a range of possible flight conditions. The resulting trajectories are captured as a Gaussian process, which assists in the statistical assessment of the flight conditions in the face of uncertainties, such as changes in wind conditions, failure to deploy the parachute, and variations in thrust. This approach also facilitates concise presentation of such uncertainties via visualisation of trajectory ensembles

    VINYL: The VIrtual Neutron and x-raY Laboratory and its applications

    Get PDF
    Experiments conducted in large scientific research infrastructures, such as synchrotrons, free electron lasers and neutron sources become increasingly complex. Such experiments, often investigating complex physical systems, are usually performed under strict time limitations and may depend critically on experimental parameters. To prepare and analyze these complex experiments, a virtual laboratory which provides start-to-end simulation tools can help experimenters predict experimental results under real or close to real instrument conditions. As a part of the PaNOSC (Photon and Neutron Open Science Cloud) project, the VIrtual Neutron and x-raY Laboratory (VINYL) is designed to be a cloud service framework to implement start-to-end simulations for those scientific facilities. In this paper, we present an introduction of the virtual laboratory framework and discuss its applications to the design and optimization of experiment setups as well as the estimation of experimental artifacts in an X-ray experiment

    Fertile Crescent crop progenitors gained a competitive advantage from large seedlings

    Get PDF
    1. Cereal domestication during the transition to agriculture resulted in widespread food production, but why only certain species were domesticated remains unknown. We tested whether seedlings of crop progenitors share functional traits that could give them a competitive advantage within anthropogenic environments, including higher germination, greater seedling survival, faster growth rates, and greater competitive ability. 2. Fifteen wild grass species from the Fertile Crescent were grown individually under controlled conditions to evaluate differences in growth between cereal crop progenitors and other wild species that were never domesticated. Differences in germination, seedling survival, and competitive ability were measured by growing a subset of these species as monocultures and mixtures. 3. Crop progenitors had greater germination success, germinated more quickly and had greater aboveground biomass when grown in competition with other species. There was no evidence of a difference in seedling survival, but seed size was positively correlated with a number of traits, including net assimilation rates, greater germination success, and faster germination under competition. In mixtures, the positive effect of seed mass on germination success and speed of germination was even more beneficial for crop progenitors than for other wild species, suggesting greater fitness. Thus, selection for larger seeded individuals under competition may have been stronger in the crop progenitors. 4. The strong competitive ability of Fertile Crescent cereal crop progenitors, linked to their larger seedling size, represents an important ecological difference between these species and other wild grasses in the region. It is consistent with the hypothesis that competition within plant communities surrounding human settlements, or under early cultivation, benefited progenitor species, favoring their success as crops

    Sex-specific effects of the local social environment on juvenile post-fledging dispersal in great tits

    Get PDF
    An individual’s decision to disperse from the natal habitat can affect its future fitness prospects. Especially in species with sex-biased dispersal, we expect the cost–benefit balance for dispersal to vary according to the social environment (e.g., local sex ratio and density). However, little is known about the social factors affecting dispersal decisions and about the temporal and spatial patterns of the dispersal process. In our study, we investigated experimentally the effects of the social environment on post-fledging dispersal of juvenile great tits by simultaneously manipulating the density and sex ratio of fledglings within forest plots. We expected young females in the post-fledging period mainly to compete for resources related to food and, as they are subordinate to males, we predicted higher female dispersal from male-biased plots. Juvenile males compete for vacant territories already in late summer and autumn; thus, we predicted increased male dispersal from high density and male-biased plots. We found that juvenile females had a higher probability to leave male-biased plots and had dispersed further from male-biased plots in the later post-fledging phase when juvenile males start to become territorial and more aggressive. Juvenile males were least likely to leave male-biased plots and had smallest dispersal distances from female-biased plots early after fledging. The results suggest that the social environment differentially affected the costs and benefits of philopatry for male and female juveniles. The local sex ratio of individuals is thus an important social trait to be considered for understanding sex-specific dispersal processes

    Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL

    Get PDF
    Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users

    Dynamical analysis of three distant trans-Neptunian objects with similar orbits

    Get PDF
    This paper reports the discovery and orbital characterization of two extreme trans-Neptunian objects (ETNOs), 2016 QV 89 and 2016 QU 89 , which have orbits that appear similar to that of a previously known object, 2013 UH 15 . All three ETNOs have semi-major axes a≈172 AU and eccentricities e≈0.77 . The angular elements (i,ω,Ω) vary by 6, 15, and 49 deg, respectively between the three objects. The two new objects add to the small number of TNOs currently known to have semi-major axes between 150 and 250 AU, and serve as an interesting dynamical laboratory to study the outer realm of our Solar System. Using a large ensemble of numerical integrations, we find that the orbits are expected to reside in close proximity in the (a,e) phase plane for roughly 100 Myr before diffusing to more separated values. We then explore other scenarios that could influence their orbits. With aphelion distances over 300 AU, the orbits of these ETNOs extend far beyond the classical Kuiper Belt, and an order of magnitude beyond Neptune. As a result, their orbital dynamics can be affected by the proposed new Solar System member, referred to as Planet Nine in this work. With perihelion distances of 35-40 AU, these orbits are also influenced by resonant interactions with Neptune. A full assessment of any possible, new Solar System planets must thus take into account this emerging class of TNOs

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range
    corecore