1,395 research outputs found
Infrared signatures of the dynamic Jahn-Teller effect in fullerene-based materials
Temperature‐dependent vibrational spectra show the evolution of dynamical Jahn‐Teller states in A(2)C(60) and A(4)C(60) fulleride salts. Whereas at low temperature the external field of the cations determines the local symmetry, at high temperature the fullerene balls distort into a D(3d) or D(5d) symmetry, independent of the surrounding lattice. The average structure is preserved while the molecules show pseudorotation between possible potential minima
Distortion and orientation of fulleride ions in A(4)C(60)
A(4)C(60) compounds (A = K, Rb, Cs) are good candidates to exhibit the Mott-Jahn-Teller insulating
state. We present near-IR and neutron scattering data to reflect molecular and crystal stucture
changes with temperature. We show how the size of the cation affects the structural and electronic
properties of these compounds
Metallicity in fullerides
Metallic salts formed from fullerenes became popular because of their superconducting properties with a relatively high transition temperature, and were initially regarded as conventional metals and superconductors. Recently, owing to improved synthetic methods and a renewed interest in the study of their physical properties, many of them were found to exhibit exotic metallic and superconducting phases. In
this paper, we summarize earlier results on unconventional metallic fulleride phases as well as the newly discovered expanded fulleride superconductors. The proximity of the Mott transition, a typical solid-state effect, results in molecular crystals, where molecular spectroscopic methods prove very successful. We concentrate on infrared and optical spectroscopy which is very well suited to follow metallicity and phase transitions in this class of substances
Distortions of C-60(4-) studied by infrared spectroscopy
The Jahn-Teller effect plays a crucial role in the explanation of the insulating character of
A(4)C(60) (A = K, Rb, Cs). To detect possible phase transitions arising from the interplay between the
molecular Jahn-Teller distortion and the distorting potential field of the counterions, we measured
the mid-IR spectra of A(4)C(60) compounds in the temperature range 90 - 300 K and found significant
spectral changes with temperature in all three compounds. We also compare these spectra to that
of Na(4)C(60) in its room-temperature polymeric phase, where the distortion is more pronounced and
evident from the structure
Ordered low-temperature structure in K4C60 detected by infrared spectroscopy
Infrared spectra of a K4C60 single-phase thin film have been measured between
room temperature and 20 K. At low temperatures, the two high-frequency T1u
modes appear as triplets, indicating a static D2h crystal-field stabilized
Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the
known doublet above 250 K, a pattern which could have three origins: a dynamic
Jahn-Teller effect, static disorder between "staggered" anions, or a phase
transition from an orientationally-ordered phase to one where molecular motion
is significant.Comment: 4 pages, 2 figures submitted to Phys. Rev.
Jahn-Teller distortion in Cs4C60 studied by vibrational spectroscopy
We have measured the infrared spectra of Cs(4)C(60) in the temperature range 220 - 450 K.
Two anomalies in the low-frequency modes at 270 K and 400 K point to changes in molecular or
crystal structure. The most probable explanation is a rotator phase above 400 K and a fully ordered
phase below 220 K; the intermediate structure is one where molecular Jahn-Teller distortions
compete with crystal field effects
Nanosegregation in Na2C60
There is continuous interest in the nature of alkali metal fullerides containing C(4)(60) and C(2)(60),
because these compounds are believed to be nonmagnetic Mott–Jahn–Teller insulators. This idea
could be verified in the case of A(4)C(60), but Na(2)C(60) is more controversial. By comparing the results
of infrared spectroscopy and X-ray diffraction, we found that Na(2)C(60) is segregated into 3-10 nm
large regions. The two main phases of the material are insulating C(60) and metallic Na(3)C(60). We
found by neutron scattering that the diffusion of sodium ions becomes faster on heating. Above
470 K Na(2)C(60) is homogeneous and we show IR spectroscopic evidence of a Jahn–Teller distorted
C(2)(60) anion
Giant microwave absorption in fine powders of superconductors
Enhanced microwave absorption, larger than that in the normal state, is
observed in fine grains of type-II superconductors (MgB and KC)
for magnetic fields as small as a few of the upper critical field. The
effect is predicted by the theory of vortex motion in type-II superconductors,
however its direct observation has been elusive due to skin-depth limitations;
conventional microwave absorption studies employ larger samples where the
microwave magnetic field exclusion significantly lowers the absorption. We show
that the enhancement is observable in grains smaller than the penetration
depth. A quantitative analysis on KC in the framework of the
Coffey--Clem (CC) theory explains well the temperature dependence of the
microwave absorption and also allows to determine the vortex pinning force
constant
Static and dynamic Jahn-Teller effect in the alkali metal fulleride salts A4C60 (A = K, Rb, Cs)
We report the temperature dependent mid- and near-infrared spectra of K4C60,
Rb4C60 and Cs4C60. The splitting of the vibrational and electronic transitions
indicates a molecular symmetry change of C604- which brings the fulleride anion
from D2h to either a D3d or a D5d distortion. In contrast to Cs4C60, low
temperature neutron diffraction measurements did not reveal a structural phase
transition in either K4C60 and Rb4C60. This proves that the molecular
transition is driven by the molecular Jahn-Teller effect, which overrides the
distorting potential field of the surrounding cations at high temperature. In
K4C60 and Rb4C60 we suggest a transition from a static to a dynamic Jahn-Teller
state without changing the average structure. We studied the librations of
these two fullerides by temperature dependent inelastic neutron scattering and
conclude that both pseudorotation and jump reorientation are present in the
dynamic Jahn-Teller state.Comment: 13 pages, 10 figures, to be published in Phys. Rev.
Structure and properties of the stable two-dimensional conducting polymer Mg5C60
We present a study on the structural, spectroscopic, conducting,
and
magnetic properties of Mg5C60, which is a two-dimensional (2D)
fulleride polymer. The polymer phase is stable up to the
exceptionally
high temperature of 823 K. The infrared and Raman studies
suggest the
formation of single bonds between the fulleride ions and
possibly
Mg-C-60 covalent bonds. Mg5C60 is a metal at ambient
temperature, as
shown by electron spin resonance and microwave conductivity
measurements. The smooth transition from a metallic to a
paramagnetic
insulator state below 200 K is attributed to Anderson
localization
driven by structural disorder
- …
