1,158 research outputs found
Quantum transport and localization in biased periodic structures under bi- and polychromatic driving
We consider the dynamics of a quantum particle in a one-dimensional periodic
potential (lattice) under the action of a static and time-periodic field. The
analysis is based on a nearest-neighbor tight-binding model which allows a
convenient closed form description of the transport properties in terms of
generalized Bessel functions. The case of bichromatic driving is analyzed in
detail and the intricate transport and localization phenomena depending on the
communicability of the two excitation frequencies and the Bloch frequency are
discussed. The case of polychromatic driving is also discussed, in particular
for flipped static fields, i.e. rectangular pulses, which can support an almost
dispersionless transport with a velocity independent of the field amplitude.Comment: 18 pages, 11 figur
Technologies for 3D Heterogeneous Integration
3D-Integration is a promising technology towards higher interconnect
densities and shorter wiring lengths between multiple chip stacks, thus
achieving a very high performance level combined with low power consumption.
This technology also offers the possibility to build up systems with high
complexity just by combining devices of different technologies. For ultra thin
silicon is the base of this integration technology, the fundamental processing
steps will be described, as well as appropriate handling concepts. Three main
concepts for 3D integration have been developed at IZM. The approach with the
greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion
(ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which
combines the advantages of the Inter Chip Via (ICV) process and the
solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully
modular ICV-SLID concept allows the formation of multiple device stacks. A test
chip was designed and the total process sequence of the ICV-SLID technology for
the realization of a three-layer chip-to-wafer stack was demonstrated. The
proposed wafer-level 3D integration concept has the potential for low cost
fabrication of multi-layer high-performance 3D-SoCs and is well suited as a
replacement for embedded technologies based on monolithic integration. To
address yield issues a wafer-level chip-scale handling is presented as well, to
select known-good dies and work on them with wafer-level process sequences
before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Transport by molecular motors in the presence of static defects
The transport by molecular motors along cytoskeletal filaments is studied
theoretically in the presence of static defects. The movements of single motors
are described as biased random walks along the filament as well as binding to
and unbinding from the filament. Three basic types of defects are
distinguished, which differ from normal filament sites only in one of the
motors' transition probabilities. Both stepping defects with a reduced
probability for forward steps and unbinding defects with an increased
probability for motor unbinding strongly reduce the velocities and the run
lengths of the motors with increasing defect density. For transport by single
motors, binding defects with a reduced probability for motor binding have a
relatively small effect on the transport properties. For cargo transport by
motors teams, binding defects also change the effective unbinding rate of the
cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl
Deterministic and stochastic descriptions of gene expression dynamics
A key goal of systems biology is the predictive mathematical description of
gene regulatory circuits. Different approaches are used such as deterministic
and stochastic models, models that describe cell growth and division explicitly
or implicitly etc. Here we consider simple systems of unregulated
(constitutive) gene expression and compare different mathematical descriptions
systematically to obtain insight into the errors that are introduced by various
common approximations such as describing cell growth and division by an
effective protein degradation term. In particular, we show that the population
average of protein content of a cell exhibits a subtle dependence on the
dynamics of growth and division, the specific model for volume growth and the
age structure of the population. Nevertheless, the error made by models with
implicit cell growth and division is quite small. Furthermore, we compare
various models that are partially stochastic to investigate the impact of
different sources of (intrinsic) noise. This comparison indicates that
different sources of noise (protein synthesis, partitioning in cell division)
contribute comparable amounts of noise if protein synthesis is not or only
weakly bursty. If protein synthesis is very bursty, the burstiness is the
dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein
content due to cells being at different stages in the division cycles, which we
show to be small (for the protein concentration and, surprisingly, also for the
protein copy number per cell) and fluctuations in the growth rate, which can
have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012
On two-dimensional Bessel functions
The general properties of two-dimensional generalized Bessel functions are
discussed. Various asymptotic approximations are derived and applied to analyze
the basic structure of the two-dimensional Bessel functions as well as their
nodal lines.Comment: 25 pages, 17 figure
Molecular Spiders with Memory
Synthetic bio-molecular spiders with "legs" made of single-stranded segments
of DNA can move on a surface which is also covered by single-stranded segments
of DNA complementary to the leg DNA. In experimental realizations, when a leg
detaches from a segment of the surface for the first time it alters that
segment, and legs subsequently bound to these altered segments more weakly.
Inspired by these experiments we investigate spiders moving along a
one-dimensional substrate, whose legs leave newly visited sites at a slower
rate than revisited sites. For a random walk (one-leg spider) the slowdown does
not effect the long time behavior. For a bipedal spider, however, the slowdown
generates an effective bias towards unvisited sites, and the spider behaves
similarly to the excited walk. Surprisingly, the slowing down of the spider at
new sites increases the diffusion coefficient and accelerates the growth of the
number of visited sites.Comment: 10 pages, 3 figure
Walks of molecular motors in two and three dimensions
Molecular motors interacting with cytoskeletal filaments undergo peculiar
random walks consisting of alternating sequences of directed movements along
the filaments and diffusive motion in the surrounding solution. An ensemble of
motors is studied which interacts with a single filament in two and three
dimensions. The time evolution of the probability distribution for the bound
and unbound motors is determined analytically. The diffusion of the motors is
strongly enhanced parallel to the filament. The analytical expressions are in
excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let
A model for bidirectional traffic of cytoskeletal motors
We introduce a stochastic lattice gas model including two particle species
and two parallel lanes. One lane with exclusion interaction and directed motion
and the other lane without exclusion and unbiased diffusion, mimicking a
micotubule filament and the surrounding solution. For a high binding affinity
to the filament, jam-like situations dominate the system's behaviour. The
fundamental process of position exchange of two particles is approximated. In
the case of a many-particle system, we were able to identify a regime in which
the system is rather homogenous presenting only small accumulations of
particles and a regime in which an important fraction of all particles
accumulates in the same cluster. Numerical data proposes that this cluster
formation will occur at all densities for large system sizes. Coupling of
several filaments leads to an enhanced cluster formation compared to the
uncoupled system, suggesting that efficient bidirectional transport on
one-dimensional filaments relies on long-ranged interactions and track
formation.Comment: 20 pages, 9 figure
- …