1,158 research outputs found

    Quantum transport and localization in biased periodic structures under bi- and polychromatic driving

    Get PDF
    We consider the dynamics of a quantum particle in a one-dimensional periodic potential (lattice) under the action of a static and time-periodic field. The analysis is based on a nearest-neighbor tight-binding model which allows a convenient closed form description of the transport properties in terms of generalized Bessel functions. The case of bichromatic driving is analyzed in detail and the intricate transport and localization phenomena depending on the communicability of the two excitation frequencies and the Bloch frequency are discussed. The case of polychromatic driving is also discussed, in particular for flipped static fields, i.e. rectangular pulses, which can support an almost dispersionless transport with a velocity independent of the field amplitude.Comment: 18 pages, 11 figur

    Technologies for 3D Heterogeneous Integration

    Full text link
    3D-Integration is a promising technology towards higher interconnect densities and shorter wiring lengths between multiple chip stacks, thus achieving a very high performance level combined with low power consumption. This technology also offers the possibility to build up systems with high complexity just by combining devices of different technologies. For ultra thin silicon is the base of this integration technology, the fundamental processing steps will be described, as well as appropriate handling concepts. Three main concepts for 3D integration have been developed at IZM. The approach with the greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion (ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which combines the advantages of the Inter Chip Via (ICV) process and the solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully modular ICV-SLID concept allows the formation of multiple device stacks. A test chip was designed and the total process sequence of the ICV-SLID technology for the realization of a three-layer chip-to-wafer stack was demonstrated. The proposed wafer-level 3D integration concept has the potential for low cost fabrication of multi-layer high-performance 3D-SoCs and is well suited as a replacement for embedded technologies based on monolithic integration. To address yield issues a wafer-level chip-scale handling is presented as well, to select known-good dies and work on them with wafer-level process sequences before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Transport by molecular motors in the presence of static defects

    Get PDF
    The transport by molecular motors along cytoskeletal filaments is studied theoretically in the presence of static defects. The movements of single motors are described as biased random walks along the filament as well as binding to and unbinding from the filament. Three basic types of defects are distinguished, which differ from normal filament sites only in one of the motors' transition probabilities. Both stepping defects with a reduced probability for forward steps and unbinding defects with an increased probability for motor unbinding strongly reduce the velocities and the run lengths of the motors with increasing defect density. For transport by single motors, binding defects with a reduced probability for motor binding have a relatively small effect on the transport properties. For cargo transport by motors teams, binding defects also change the effective unbinding rate of the cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    On two-dimensional Bessel functions

    Get PDF
    The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.Comment: 25 pages, 17 figure

    Instandsetzung des Kulturwehrs Kehl

    Get PDF

    Molecular Spiders with Memory

    Full text link
    Synthetic bio-molecular spiders with "legs" made of single-stranded segments of DNA can move on a surface which is also covered by single-stranded segments of DNA complementary to the leg DNA. In experimental realizations, when a leg detaches from a segment of the surface for the first time it alters that segment, and legs subsequently bound to these altered segments more weakly. Inspired by these experiments we investigate spiders moving along a one-dimensional substrate, whose legs leave newly visited sites at a slower rate than revisited sites. For a random walk (one-leg spider) the slowdown does not effect the long time behavior. For a bipedal spider, however, the slowdown generates an effective bias towards unvisited sites, and the spider behaves similarly to the excited walk. Surprisingly, the slowing down of the spider at new sites increases the diffusion coefficient and accelerates the growth of the number of visited sites.Comment: 10 pages, 3 figure

    Walks of molecular motors in two and three dimensions

    Get PDF
    Molecular motors interacting with cytoskeletal filaments undergo peculiar random walks consisting of alternating sequences of directed movements along the filaments and diffusive motion in the surrounding solution. An ensemble of motors is studied which interacts with a single filament in two and three dimensions. The time evolution of the probability distribution for the bound and unbound motors is determined analytically. The diffusion of the motors is strongly enhanced parallel to the filament. The analytical expressions are in excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let

    A model for bidirectional traffic of cytoskeletal motors

    Full text link
    We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament and the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the system's behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.Comment: 20 pages, 9 figure
    • …
    corecore