78 research outputs found
Rac1 Deletion Causes Thymic Atrophy
The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation
A supramolecular helix that disregards chirality
The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks
A novel aspect of the structure of the avian thymic medulla.
We provide evidence for the compartmentalization of the avian thymic medulla and identify the avian thymic dendritic cell. The thymic anlage develops from an epithelial cord of the branchial endoderm. Branches of the cord are separated by primary septae of neural crest origin. The dilation of the primary septae produces the keratin-negative area (KNA) of the thymic medulla and fills the gaps of the keratin-positive network (KPN). Morphometric analysis indicates that the KNA takes up about half of the volume of the thymic medulla, which has reticular connective tissue, like peripheral lymphoid organs. The KNA receives blood vessels and in addition to pericytes, the myoid cells of striated muscle structure occupy this area. The myoid cells are of branchial arch or prechordal plate origin providing indirect evidence for the neural crest origin of the KNA. The marginal epithelial cells of the KPN co-express keratin and vimentin intermediate filaments, which indicate their functional peculiarity. The basal lamina of the primary septum is discontinuous on the surface of the KPN providing histological evidence for the loss of the blood-thymus barrier in the medulla. In the center of the KNA, the dendritic cells lie in close association with blood vessels, whereas the B-cells accumulate along the KPN. The organization of the KPN and KNA increases the "surface" of the so-called cortico-medullary border, thereby contributing to the efficacy of central tolerance
Long-Term Persistence of Functional Thymic Epithelial Progenitor Cells In Vivo under Conditions of Low FOXN1 Expression
Normal thymus function reflects interactions between developing T-cells and several thymic stroma cell types. Within the stroma, key functions reside in the distinct cortical and medullary thymic epithelial cell (TEC) types. It has been demonstrated that, during organogenesis, all TECs can be derived from a common thymic epithelial progenitor cell (TEPC). The properties of this common progenitor are thus of interest. Differentiation of both cTEC and mTEC depends on the epithelial-specific transcription factor FOXN1, although formation of the common TEPC from which the TEC lineage originates does not require FOXN1. Here, we have used a revertible severely hypomorphic allele of Foxn1, Foxn1R, to test the stability of the common TEPC in vivo. By reactivating Foxn1 expression postnatally in Foxn1R/- mice we demonstrate that functional TEPCs can persist in the thymic rudiment until at least 6 months of age, and retain the potential to give rise to both cortical and medullary thymic epithelial cells (cTECs and mTECs). These data demonstrate that the TEPC-state is remarkably stable in vivo under conditions of low Foxn1 expression, suggesting that manipulation of FOXN1 activity may prove a valuable method for long term maintenance of TEPC in vitro
Human immunodeficiency virus: 25Β years of diagnostic and therapeutic strategies and their impact on hepatitis B and C virus
The human immunodeficiency virus (HIV) had spread unrecognized in the human population as sexually transmitted disease and was finally identified by its disease AIDS in 1981. Even after the isolation of the causative agent in 1983, the burden and death rate of AIDS accelerated worldwide especially in young people despite the confection of new drugs capable to inhibit virus replication since 1997. However, at least in industrialised countries, this trend could be reversed by the introduction of combination therapy strategies. The design of new drugs is on going; besides the inhibition of the three enzymes of HIV for replication and maturation (reverse transcriptase, integrase and protease), further drugs inhibits fusion of viral and cellular membranes and virus maturation. On the other hand, viral diagnostics had been considerably improved since the emergence of HIV. There was a need to identify infected people correctly, to follow up the course of immune reconstitution of patients by measuring viral load and CD4 cells, and to analyse drug escape mutations leading to drug resistance. Both the development of drugs and the refined diagnostics have been transferred to the treatment of patients infected with hepatitis B virus (HBV) and hepatitis C virus (HCV). This progress is not completed; there are beneficial aspects in the response of the scientific community to the HIV burden for the management of other viral diseases. These aspects are described in this contribution. Further aspects as handling a stigmatising disease, education of self-responsiveness within sexual relationships, and ways for confection of a protective vaccine are not covered
ADAM17 Deletion in Thymic Epithelial Cells Alters Aire Expression without Affecting T Cell Developmental Progression
Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach.We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical Ξ±Ξ² T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted.In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified
Human embryonic stem cells: preclinical perspectives
Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic
Variation in Womenβs Mate Preferences Over the Development of a Monogamous Relationship Corresponds with Changes in Menβs Life History Strategy
Much research has examined how menβs mating strategies change over the development of a relationship consistent with predictions from Life History Theory. Specifically, research shows both physiological and behavioural indicators of mating effort decrease once men are mated, and further once they become fathers, unless they remain engaged in mating effort. This switch from mating to parenting effort is sexually selected, and therefore the corresponding shifts in women should be examined, though to date, womenβs short- or long-term mate preferences have been studied as separate entities rather than as a transition from short- to long- term. We examined how womenβs mate preferences changed over the development of a relationship, to see if they varied consistently with what is known about variation in menβs mating effort. Vignettes detailed four key milestones in the development of a relationship and women rated the importance of the man at each stage displaying indicators of mating or parenting effort. Women increasingly prioritised indicators of parenting effort in men as the relationship developed, consistent with what is known about menβs reduction in mating effort in favour of parenting effort over the development of a relationship. The results support predictions from Life History Theory and highlight the interacting mutually reinforcing nature of sexually selected behaviours
Medical conditions in autism spectrum disorders
Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development
- β¦