29 research outputs found

    Type 3 ILCs in Lung Disease

    Get PDF
    The lungs represent a complex immune setting, balancing external environmental signals with a poised immune response that must protect from infection, mediate tissue repair, and maintain lung function. Innate lymphoid cells (ILCs) play a central role in tissue repair and homeostasis, and mediate protective immunity in a variety of mucosal tissues, including the lung. All three ILC subsets are present in the airways of both mice and humans; and ILC2s shown to have pivotal roles in asthma, airway hyper-responsiveness, and parasitic worm infection. The involvement of ILC3s in respiratory diseases is less well-defined, but they are known to be critical in homeostasis, infection and inflammation at other mucosal barriers, such as the gut. Moreover, they are important players in the IL17/IL22 axis, which is key to lung health. In this review, we discuss the emerging role of ILC3s in the context of infectious and inflammatory lung diseases, with a focus on data from human subjects

    Type 3 ILCs in Lung Disease

    Get PDF
    The lungs represent a complex immune setting, balancing external environmental signals with a poised immune response that must protect from infection, mediate tissue repair, and maintain lung function. Innate lymphoid cells (ILCs) play a central role in tissue repair and homeostasis, and mediate protective immunity in a variety of mucosal tissues, including the lung. All three ILC subsets are present in the airways of both mice and humans; and ILC2s shown to have pivotal roles in asthma, airway hyper-responsiveness, and parasitic worm infection. The involvement of ILC3s in respiratory diseases is less well-defined, but they are known to be critical in homeostasis, infection and inflammation at other mucosal barriers, such as the gut. Moreover, they are important players in the IL17/IL22 axis, which is key to lung health. In this review, we discuss the emerging role of ILC3s in the context of infectious and inflammatory lung diseases, with a focus on data from human subjects

    A Novel Liposome-Based Adjuvant CAF01 for Induction of CD8+ Cytotoxic T-Lymphocytes (CTL) to HIV-1 Minimal CTL Peptides in HLA-A*0201 Transgenic Mice

    Get PDF
    Background: Specific cellular cytotoxic immune responses (CTL) are important in combating viral diseases and a highly desirable feature in the development of targeted HIV vaccines. Adjuvants are key components in vaccines and may assist the HIV immunogens in inducing the desired CTL responses. In search for appropriate adjuvants for CD8+ T cells it is important to measure the necessary immunological features e.g. functional cell killing/lysis in addition to immunological markers that can be monitored by simple immunological laboratory methods. Methodology/Principal Findings: We tested the ability of a novel two component adjuvant, CAF01, consisting of the immune stimulating synthetic glycolipid TDB (Trehalose-Dibehenate) incorporated into cationic DDA (Dimethyldioctade-cylammonium bromide) liposomes to induce CD8+ T-cell restricted cellular immune responses towards subdominant minimal HLA-A0201-restricted CTL epitopes from HIV-1 proteins in HLA-A*0201 transgenic HHD mice. CAF01 has an acceptable safety profile and is used in preclinical development of vaccines against HIV-1, malaria and tuberculosis. Conclusions/Significance: We found that CAF01 induced cellular immune responses against HIV-1 minimal CTL epitopes in HLA-A*0201 transgenic mice to levels comparable with that of incomplete Freund’s adjuvant

    Host genotype and time dependent antigen presentation of viral peptides: predictions from theory

    Get PDF
    The rate of progression of HIV infected individuals to AIDS is known to vary with the genotype of the host, and is linked to their allele of human leukocyte antigen (HLA) proteins, which present protein degradation products at the cell surface to circulating T-cells. HLA alleles are associated with Gag-specific T-cell responses that are protective against progression of the disease. While Pol is the most conserved HIV sequence, its association with immune control is not as strong. To gain a more thorough quantitative understanding of the factors that contribute to immunodominance, we have constructed a model of the recognition of HIV infection by the MHC class I pathway. Our model predicts surface presentation of HIV peptides over time, demonstrates the importance of viral protein kinetics, and provides evidence of the importance of Gag peptides in the long-term control of HIV infection. Furthermore, short-term dynamics are also predicted, with simulation of virion-derived peptides suggesting that efficient processing of Gag can lead to a 50% probability of presentation within 3 hours post-infection, as observed experimentally. In conjunction with epitope prediction algorithms, this modelling approach could be used to refine experimental targets for potential T-cell vaccines, both for HIV and other viruses

    Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection

    Get PDF
    HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naĂŻve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression

    A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape

    Get PDF
    Background Presentation of identical HIV-1 peptides by closely related Human Leukocyte Antigen class I (HLAI) molecules can select distinct patterns of escape mutation that have a significant impact on viral fitness and disease progression. The molecular mechanisms by which HLAI micropolymorphisms can induce differential HIV-1 escape patterns within identical peptide epitopes remain unknown. Results Here, we undertook genetic and structural analyses of two immunodominant HIV-1 peptides, Gag180–188 (TPQDLNTML, TL9-p24) and Nef71–79 (RPQVPLRPM, RM9-Nef) that are among the most highly targeted epitopes in the global HIV-1 epidemic. We show that single polymorphisms between different alleles of the HLA-B7 superfamily can induce a conformational switch in peptide conformation that is associated with differential HLAI-specific escape mutation and immune control. A dominant R71K mutation in the Nef71-79 occurred in those with HLA-B*07:02 but not B*42:01/02 or B*81:01. No structural difference in the HLA-epitope complexes was detected to explain this observation. Conclusions These data suggest that identical peptides presented through very similar HLAI landscapes are recognized as distinct epitopes and provide a novel structural mechanism for previously observed differential HIV-1 escape and disease progression
    corecore