684 research outputs found

    Lifshitz Tails in Constant Magnetic Fields

    Get PDF
    We consider the 2D Landau Hamiltonian HH perturbed by a random alloy-type potential, and investigate the Lifshitz tails, i.e. the asymptotic behavior of the corresponding integrated density of states (IDS) near the edges in the spectrum of HH. If a given edge coincides with a Landau level, we obtain different asymptotic formulae for power-like, exponential sub-Gaussian, and super-Gaussian decay of the one-site potential. If the edge is away from the Landau levels, we impose a rational-flux assumption on the magnetic field, consider compactly supported one-site potentials, and formulate a theorem which is analogous to a result obtained in the case of a vanishing magnetic field

    Further genetic heterogeneity for autosomal dominant human sutural cataracts

    Get PDF
    A unique sutural cataract was observed in a 4-generation German family to be transmitted as an isolated autosomal, dominant trait. Since mutations in the gamma-crystallin encoding CRYG genes have previously been demonstrated to be the most frequent reason for isolated congenital cataracts, all 4 active CRYG genes have been sequenced. A single base-pair change in the CRYGA gene has been shown, leading to a premature stop codon. This was not observed in 170 control individuals. However, it did not segregate with the disease phenotype. This is the first truncating mutation in an active CRYG gene without a dominant phenotype. As the CRYGA mutation did not explain the cataract, several other candidate loci (CCV, GJA8, CRYBB2, BFSP2, MIP, GJA8, central pouch-like, CRYBA1) were investigated by micro-satellite markers and linkage analysis, but they were excluded based on the combination of haplotype analysis and two-point linkage analysis. The phenotype in this family is due to a mutation in another sutural cataract gene yet to be identified

    Understanding the Random Displacement Model: From Ground-State Properties to Localization

    Full text link
    We give a detailed survey of results obtained in the most recent half decade which led to a deeper understanding of the random displacement model, a model of a random Schr\"odinger operator which describes the quantum mechanics of an electron in a structurally disordered medium. These results started by identifying configurations which characterize minimal energy, then led to Lifshitz tail bounds on the integrated density of states as well as a Wegner estimate near the spectral minimum, which ultimately resulted in a proof of spectral and dynamical localization at low energy for the multi-dimensional random displacement model.Comment: 31 pages, 7 figures, final version, to appear in Proceedings of "Spectral Days 2010", Santiago, Chile, September 20-24, 201

    UNTERSUCHUNG DER ADSORPTION VON n-HEPTAN AM MOLEKULARSIEB 5A

    Get PDF

    Low lying spectrum of weak-disorder quantum waveguides

    Full text link
    We study the low-lying spectrum of the Dirichlet Laplace operator on a randomly wiggled strip. More precisely, our results are formulated in terms of the eigenvalues of finite segment approximations of the infinite waveguide. Under appropriate weak-disorder assumptions we obtain deterministic and probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas argument allows us to obtain so-called 'initial length scale decay estimates' at they are used in the proof of spectral localization using the multiscale analysis.Comment: Accepted for publication in Journal of Statistical Physics http://www.springerlink.com/content/0022-471

    Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method

    Full text link
    A technically convenient signature of Anderson localization is exponential decay of the fractional moments of the Green function within appropriate energy ranges. We consider a random Hamiltonian on a lattice whose randomness is generated by the sign-indefinite single-site potential, which is however sign-definite at the boundary of its support. For this class of Anderson operators we establish a finite-volume criterion which implies that above mentioned the fractional moment decay property holds. This constructive criterion is satisfied at typical perturbative regimes, e. g. at spectral boundaries which satisfy 'Lifshitz tail estimates' on the density of states and for sufficiently strong disorder. We also show how the fractional moment method facilitates the proof of exponential (spectral) localization for such random potentials.Comment: 29 pages, 1 figure, to appear in AH
    • 

    corecore