463 research outputs found

    Genetic analysis of seed development in Arabidopsis thaliana = [Genetische analyse van de zaadontwikkeling in Arabidopsis thaliana]

    Get PDF
    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection procedures. The mutants have been analyzed genetically, physiologically, and morphologically. Some of the mutants are impaired in the biosynthesis or sensitivity to the plant hormone, abscisic acid (ABA). All ABA-related mutants show reduced seed dormancy, indicating the important role of this hormone in the establishment of dormancy. In a direct screen for reduced dormancy, two mutants (rdo) with reduced dormancy were found. These were not ABA-deficient and showed the same sensitivity to ABA, ethylene, auxin, and cytokinin as the wild-type. In contrast to this embryo-determined reduced dormancy, reduced dormancy can also originate in an altered seed coat (testa), like in the altered testa shape ( ats ) mutant. Here, the altered testa shape is caused by a defect in the development of the integuments. Extreme ABA-insensitive mutants ( abi3 ) have green seeds that fail to complete many other aspects of seed maturation, including the induction of dormancy and desiccation tolerance, and the accumulation of seed storage proteins and lipids. In addition to abi3 mutants, lec and fus mutants exhibit such a severely disturbed seed maturation as well, with dark purple seeds due to anthocyanin accumulation. The fus3 mutant shows normal ABA-sensitivity. These various seed maturation mutants indicate that specific genes, some acting dependently and some acting independently from ABA, are responsible for seed maturation programs. The seed maturation mutants were subjected to a physiological and biochemical analysis. A GA-deficient mutant was combined with these mutants. Analysis of these double mutants indicated that seeds of the abi3 and lec mutants did not require GA for germination, in contrast to fus3 seeds. This correlates with ABA-sensitivity for germination. The composition of storage proteins and carbohydrates in abi3 , lec, and fus3 mutant seeds has been compared. The abi3 , lec, and fus3 mutants all showed severely reduced storage proteins. The desiccation intolerance of these seed maturation mutants was not correlated with the lack of specific carbohydrates. Furthermore, the mutants had a higher total content of carbohydrates. This is probably a consequence of the lower levels of storage lipids and proteins

    Tomato susceptibility to Alternaria stem canker:Parameters involved in host-specific toxin-induced leaf necrosis

    Get PDF
    AAL-toxin causes severe necrosis in leaves of susceptible tomato cultivars at nanomolar concentrations. In resistant tomato cultivars harbouring the semi-dominant Alternaria stem canker resistance locus necrosis is also observed, however at much higher toxin concentrations, in both lines the percentage of the leaf area exhibiting necrosis is dependent on toxin concentration and on length of toxin exposure. However, at the same toxin concentration, periods of toxin exposure resulting in similar necrosis are much longer for the resistant than for the susceptible tomato. It was demonstrated that toxin uptake in the leaves does not imply toxin uptake in the cells since a discrepancy was observed between death of protoplasts, isolated from leaves cut for protoplast isolation immediately after incubation on AAL-toxin and necrosis in leaves when further incubated on water. However, when after exposure to AAL-toxin leaves were further incubated on water for 24 h before they were cut for protoplast isolation, a correlation was found between leaf necrosis and death of protoplasts. This suggests that further transport is needed in leaves after toxin uptake, bringing toxin to all the cells, that cannot occur in leaves cut for protoplast isolation. Light plays an important role in AAL-toxin induced necrosis and it was shown that length of light exposure controls necrosis development like toxin concentration and length of toxin exposure. The product of these 3 parameters can provide a good hint to predict the extent of leaf necrosis. The effect of light might be restricted to differentiated leaf tissue, since it was not observed in callus tissue

    Multiple paternity in superfetatious live-bearing fishes.

    Get PDF
    Superfetation, the ability to carry several overlapping broods at different developmental stages, has evolved independently multiple times within the live-bearing fish family Poeciliidae. Even though superfetation is widespread among poeciliids, its evolutionary advantages remain unclear. Theory predicts that superfetation should increase polyandry by increasing the probability that temporally overlapping broods are fertilized by different fathers. Here, we test this key prediction in two poeciliid species that each carry two temporally overlapping broods: Poeciliopsis retropinna and P. turrubarensis. We collected 25 females per species from freshwater streams in South-Eastern Costa Rica and assessed multiple paternity by genotyping all their embryos (420 embryos for P. retropinna; 788 embryos for P. turrubarensis) using existing and newly developed microsatellite markers. We observed a high frequency of unique sires in the simultaneous, temporally overlapping broods in P. retropinna (in 56% of the pregnant females) and P. turrubarensis (79%). We found that the mean number of sires within females was higher than the number of sires within the separate broods (2.92 sires within mothers vs. 2.36 within separate broods in P. retropinna; and 3.40 vs 2.56 in P. turrubarensis). We further observed that there were significant differences in the proportion of offspring sired by each male in 42% of pregnant female P. retropinna and 65% of female P. turrubarensis; however, this significance applied to only 9% and 46% of the individual broods in P. retropinna and P. turrubarensis, respectively, suggesting that the unequal reproductive success of sires (i.e. reproductive skew) mostly originated from differences in paternal contribution between, rather than within broods. Together, these findings tentatively suggest that superfetation may promote polyandry and reproductive skew in live-bearing fishes

    The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots

    Get PDF
    Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop

    Pre-anthesis ovary development determines genotypic differences in potential kernel weight in sorghum

    Get PDF
    Kernel weight is an important factor determining grain yield and nutritional quality in sorghum, yet the developmental processes underlying the genotypic differences in potential kernel weight remain unclear. The aim of this study was to determine the stage in development at which genetic effects on potential kernel weight were realized, and to investigate the developmental mechanisms by which potential kernel weight is controlled in sorghum. Kernel development was studied in two field experiments with five genotypes known to differ in kernel weight at maturity. Pre-fertilization floret and ovary development was examined and post-fertilization kernel-filling characteristics were analysed. Large kernels had a higher rate of kernel filling and contained more endosperm cells and starch granules than normal-sized kernels. Genotypic differences in kernel development appeared before stamen primordia initiation in the developing florets, with sessile spikelets of large-seeded genotypes having larger floret apical meristems than normal-seeded genotypes. At anthesis, the ovaries for large-sized kernels were larger in volume, with more cells per layer and more vascular bundles in the ovary wall. Across experiments and genotypes, there was a significant positive correlation between kernel dry weight at maturity and ovary volume at anthesis. Genotypic effects on meristem size, ovary volume, and kernel weight were all consistent with additive genetic control, suggesting that they were causally related. The pre-fertilization genetic control of kernel weight probably operated through the developing pericarp, which is derived from the ovary wall and potentially constrains kernel expansion

    Arabidopsis Mutants with a Reduced Seed Dormancy

    Full text link
    corecore