464 research outputs found

    Mechanisms of Therapeutic Resistance in Cancer (Stem) Cells with Emphasis on Thyroid Cancer Cells

    Get PDF
    The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells

    Maternal smoking and high BMI disrupt thyroid gland development

    Get PDF
    This study was supported by grants from the Medical Research Council (MR/L010011/1) (to PAF & PJOS), the Natural Science and Engineering Research Council of Canada (NSERC) for TK and SHK, and NHS Endowment Grant (to PF).Peer reviewedPublisher PD

    Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B–C–A with full biological activity in boars

    Get PDF
    RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B–C–A monomeric structure with full biological activity

    Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex

    Get PDF
    This study defines a new paradigm for cAMP signalling, namely sub-picomolar response to relaxin through a pre-assembled signalling complex. It therefore extends the complexity of GPCR-signalling, despite the fact that future work will have to proof whether pre-assembled complexes represent a widespread phenomenon

    Dual specificity antibodies using a double-stranded oligonucleotide bridge

    Get PDF
    AbstractThe covalent conjugation of oligonucleotides to antibody Fab’ fragments was optimized by using oligonucleotides modified with a hexaethylene linker arm bearing three amino groups. One oligonucleotide was coupled to antibody of one specificity and a complementary oligonucleotide to antibody of a second specificity. The antibodies were then allowed to hybridize by base pairing of the complementary nucleotide sequences and the generation of bispecific antibody was analyzed on SDS-PAGE and confirmed using BIAcore analysis. The strategy of complementary oligonucleotide-linked bispecific molecules is not limited to antibodies but is applicable to linking any two molecules of different characteristics

    INSL3 in the Ruminant: A Powerful Indicator of Gender- and Genetic-Specific Feto-Maternal Dialogue

    Get PDF
    The hormone Insulin-like peptide 3 (INSL3) is a major secretory product of the Leydig cells from both fetal and adult testes. Consequently, it is a major gender-specific circulating hormone in the male fetus, where it is responsible for the first phase of testicular descent, and in the adult male. In most female mammals, circulating levels are very low, corresponding to only a small production of INSL3 by the mature ovaries. Female ruminants are exceptional in exhibiting high INSL3 gene expression by the thecal cells of antral follicles and by the corpora lutea. We have developed a specific and sensitive immunoassay to measure ruminant INSL3 and show that, corresponding to the high ovarian gene expression, non-pregnant adult female sheep and cows have up to four times the levels observed in other female mammals. Significantly, this level declines during mid-pregnancy in cows carrying a female fetus, in which INSL3 is undetectable. However, in cows carrying a male fetus, circulating maternal INSL3 becomes elevated further, presumably due to the transplacental transfer of fetal INSL3 into the maternal circulation. Within male fetal blood, INSL3 is high in mid-pregnancy (day 153) corresponding to the first transabdominal phase of testicular descent, and shows a marked dependence on paternal genetics, with pure bred or hybrid male fetuses of Bos taurus (Angus) paternal genome having 30% higher INSL3 levels than those of Bos indicus (Brahman) paternity. Thus INSL3 provides the first example of a gender-specific fetal hormone with the potential to influence both placental and maternal physiology
    corecore