1,397 research outputs found

    Mineralocorticoid receptor blockade during a rat's first violent encounter inhibits its subsequent propensity for violence.

    Get PDF
    In individuals naive to serious conflict in an unfamiliar environment, violence has long-lasting effects on subsequent aggressive behavior. This effect of the stressful experience of a first violent conflict occurs in victims as well as offenders. The authors study in the male rat as offender the role of a rapid corticosterone signal mediated by brain mineralocorticoid receptors (MR) in adjusting the threshold of aggressive responses. For this purpose, the authors have applied electrical stimulation of the brain's aggression circuit via the hypothalamic attack area or HAA. Using this paradigm, they found that in inexperienced rats, retesting of the animals on subsequent days facilitated aggression. Hypothalamic attack thresholds decreased to about 50% of their initial level. However, blocking the MR once with the mineralocorticoid antagonist spironolactone, during the very first evoked attacks, permanently prevented attack facilitation in subsequent conflicts in that same environment. The MR-mediated effect blocked by the antagonist occurred within an hour following the start of the first aggression tests only. A later MR blockade was not effective. These findings suggest that the corticosterone stress response during a very first serious conflict initializes an enhanced propensity for violent aggression through the brain MR

    MR/GR Signaling in the Brain during the Stress Response

    Get PDF
    This contribution is about mineralocorticoid receptors (MRs) in their capacity as mediators of glucocorticoid action in the brain. This paradox has evolved because MRs are promiscuous and bind with high-affinity cortisol and corticosterone as well as aldosterone, deoxycorticosterone, and progesterone. The MRs “see,” however, predominantly glucocorticoids, because of their 100–1000-fold excess over aldosterone; bioavailability is further enhanced because of local regeneration of glucocorticoids by 11ÎČOH-steroid dehydrogenase (HSD-1). In contrast to these glucocorticoid-preferring MR, the evolutionary later appearance of aldosterone-selective MR in epithelial cells depends on co-localization with the oxidase 11ÎČ-hydroxysteroid-dehydrogenase type 2 (HSD-2) in a few hundred neurons in the nucleus tractus solitarii (NTS), which innervate frontal brain regions to regulate cognitive, emotional, and motivational aspects of salt appetite. The glucocorticoid-MRs and classical glucocorticoid receptors (GRs) mediate in a complementary manner the glucocorticoid coordination of circadian events and mediate the regulation of stress coping and adaptation. If an individual is exposed to a threat, MRs are crucial for the selection of a particular coping style, which is via GR activation subsequently stored in the memory for future use. Our contribution is concluded with the notion that an imbalance in MR- and GR-mediated actions increases susceptibility to stress-related disorders

    Onderscheidbaarheid van alfanumerieke symbolen

    Get PDF

    N-d scattering above the deuteron breakup threshold

    Get PDF
    The complex Kohn variational principle and the (correlated) Hyperspherical Harmonics technique are applied to study the N--d scattering above the deuteron breakup threshold. The configuration with three outgoing nucleons is explicitly taken into account by solving a set of differential equations with outgoing boundary conditions. A convenient procedure is used to obtain the correct boundary conditions at values of the hyperradius ≈100\approx 100 fm. The inclusion of the Coulomb potential is straightforward and does not give additional difficulties. Numerical results have been obtained for a simple s-wave central potential. They are in nice agreement with the benchmarks produced by different groups using the Faddeev technique. Comparisons are also done with experimental elastic N--d cross section at several energies.Comment: LaTeX, 13 pages, 3 figure

    Vector meson photoproduction studied in its radiative decay channel

    Full text link
    We provide an analysis of vector meson photoproduction in the channel of the vector meson decaying into a pseudoscalar meson plus a photon, i.e. V→PÎłV\to P\gamma. It is shown that non-trivial kinematic correlations arise from the measurement of the PÎłP\gamma angular distributions in the overall c.m. system in comparison with those in the vector-meson-rest frame. In terms of the vector meson density matrix elements, the implication of such kinematic correlations in the measurement of polarization observables is discussed. For the ω\omega meson production, due to its relatively large branching ratios for ω→π0Îł\omega\to\pi^0\gamma, additional events from this channel may enrich the information about the reaction mechanism and improve the statistics of the recent measurement of polarized beam asymmetries by the GRAAL Collaboration. For Ï•â†’Î·Îł\phi\to \eta\gamma, Ïâ†’Ï€Îł\rho\to \pi\gamma, and K∗→KÎłK^*\to K\gamma, we expect that additional information about the spin structure of the vector meson production vertex can be derived.Comment: Revtex, 14 pages, 2 eps figures; Version accepted by PR

    Three channel model of meson-meson scattering and scalar meson spectroscopy

    Get PDF
    New solutions on the scalar -- isoscalar ππ\pi\pi phase shifts are analysed together with previous KKˉK\bar{K} results using a separable potential model of three coupled channels (ππ\pi\pi, KKˉK\bar{K} and an effective 2π2π2\pi 2\pi system). Model parameters are fitted to two sets of solutions obtained in a recent analysis of the CERN-Cracow-Munich measurements of the π−p↑→π+π−n\pi^- p_{\uparrow} \to \pi^+ \pi^- n reaction on a polarized target. A relatively narrow (90 -- 180 MeV) scalar resonance f0(1400−1460)f_0(1400-1460) is found, in contrast to a much broader (Γ≈500\Gamma \approx 500 MeV) state emerging from the analysis of previous unpolarized target data.Comment: 10 Latex pages + 6 postscript figure

    Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    Get PDF
    In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation

    Primary Cauda Equina T-Cell Lymphoblastic Lymphoma

    Get PDF
    BACKGROUND: T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive form of non-Hodgkin lymphoma. This report describes, to our knowledge, the first adult case of a primary cauda equina T-LBL. Treatment consists of multiagent chemotherapy, and surgical removal of T-LBL does not improve outcome. We discuss the workup of patients with an intradural spinal mass, together with a review of the literature on primary spinal lymphoma of the cauda equina. CASE DESCRIPTION: A 54-year-old woman with Crohn's disease, for which she was taking immunosuppressive medication, presented with progressive back pain radiating to both legs and deteriorating neurologic deficits caused by an intradural, contrast-enhancing lesion in the L1-5 region. During acute surgery, the tumor was partially resected. Immunohistochemical phenotyping revealed a T-LBL. No other lymphoma localizations were found after subsequent staging. Despite extensive treatment, the patient died of disseminated disease throughout the central nervous system, 6 weeks after the diagnosis. CONCLUSIONS: Pain and progressive neurologic complaints can be symptoms of a (malignant) intradural spinal tumor. Intradural lymphoma must be considered as a differential diagnosis by clinicians because it can mimic neoplasms that often require urgent surgery. The histopathologic diagnosis should preferably be obtained by way of cerebrospinal fluid analysis or tumor biopsy because tumor resection has no beneficial effect on the oncologic outcome

    Annihilation range and final-state interaction in the antiproton-proton annihilation into pi-pi+

    Full text link
    The large set of accurate data on differential cross section and analyzing power from the CERN LEAR experiment on pˉp→π+π−\bar pp \to \pi^+\pi^- in the range from 360 to 1550 MeV/c is well reproduced within a distorted wave approximation approach. The initial pˉp\bar pp scattering wave functions originate from a recent NˉN\bar N N model. The transition operator is obtained from a combination of the 3P0^3P_0 and 3S1^3S_1 quark-antiquark annihilation mechanisms. A good fit to the data, in particular the reproduction of the double dip structure observed in the analyzing powers, requires quark wave functions for proton, antiproton, and pions with radii slightly larger than the respective measured charge radii. This corresponds to an increase in range of the annihilation mechanisms and consequently the amplitudes for total angular momentum J=2 and higher are much larger than in previous approaches. The final state ππ\pi\pi wave functions, parameterized in terms of ππ\pi\pi phase shifts and inelasticities, are also a very important ingredient for the fine tuning of the fit to the observables.Comment: 11 pages, 11 figures (Revtex 4), revised version with one additional figure. Accepted for publication in PR
    • 

    corecore