82 research outputs found

    Different Temporal Structure for Form versus Surface Cortical Color Systems – Evidence from Chromatic Non-Linear VEP

    Get PDF
    Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature

    Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND: Decreased motion perception has been suggested as a marker for visual pathway demyelination in optic neuritis (ON) and/or multiple sclerosis (MS). OBJECTIVES: To examine the influence of neuro-axonal damage on motion perception in MS and neuromyelitis optica spectrum disorders (NMOSD). METHODS: We analysed motion perception with numbers-from-motion (NFM), visual acuity, (multifocal (mf)) VEP, optical coherence tomography in patients with MS (n = 38, confirmatory cohort n = 43), NMOSD (n = 13) and healthy controls (n = 33). RESULTS: NFM was lower compared with controls in MS (B = −12.37, p < 0.001) and NMOSD (B = −34.5, p < 0.001). NFM was lower in ON than in non-ON eyes (B = −30.95, p = 0.041) in NMOSD, but not MS. In MS and NMOSD, lower NFM was associated with worse visual acuity (B = −139.4, p < 0.001/B = −77.2, p < 0.001) and low contrast letter acuity (B = 0.99, p = 0.002/B = 1.6, p < 0.001), thinner peripapillary retinal nerve fibre layer (B = 1.0, p < 0.001/ B = 0.92, p = 0.016) and ganglion cell/inner plexiform layer (B = 64.8, p < 0.001/B = 79.5, p = 0.006), but not with VEP P100 latencies. In the confirmatory MS cohort, lower NFM was associated with thinner retinal nerve fibre layer (B = 1.351, p < 0.001) and increased mfVEP P100 latencies (B = −1.159, p < 0.001). CONCLUSIONS: Structural neuro-axonal visual pathway damage is an important driver of motion perception impairment in MS and NMOSD

    In Vivo Evaluation of Retinal Neurodegeneration in Patients with Multiple Sclerosis

    Get PDF
    To evaluate macular morphology in the eyes of patients with multiple sclerosis (MS) with or without optic neuritis (ON) in previous history.Optical coherence tomography (OCT) examination was performed in thirty-nine patients with MS and in thirty-three healthy subjects. The raw macular OCT data were processed using OCTRIMA software. The circumpapillary retinal nerve fiber layer (RNFL) thickness and the weighted mean thickness of the total retina and 6 intraretinal layers were obtained for each eye. The eyes of MS patients were divided into a group of 39 ON-affected eyes, and into a group of 34 eyes with no history of ON for the statistical analyses. Receiver operating characteristic (ROC) curves were constructed to determine which parameter can discriminate best between the non-affected group and controls.The circumpapillary RNFL thickness was significantly decreased in the non-affected eyes compared to controls group only in the temporal quadrant (p = 0.001) while it was decreased in the affected eyes of the MS patients in all quadrants compared to the non-affected eyes (p<0.05 in each comparison). The thickness of the total retina, RNFL, ganglion cell layer and inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, comprising the RNFL and GCL+IPL) in the macula was significantly decreased in the non-affected eyes compared to controls (p<0.05 for each comparison) and in the ON-affected eyes compared to the non-affected eyes (p<0.001 for each comparison). The largest area under the ROC curve (0.892) was obtained for the weighted mean thickness of the GCC. The EDSS score showed the strongest correlation with the GCL+IPL and GCC thickness (p = 0.007, r = 0.43 for both variables).Thinning of the inner retinal layers is present in eyes of MS patients regardless of previous ON. Macular OCT image segmentation might provide a better insight into the pathology of neuronal loss and could therefore play an important role in the diagnosis and follow-up of patients with MS

    APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies.

    Get PDF
    OBJECTIVE To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly

    Biomarkers of Multiple Sclerosis

    Get PDF
    The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe

    APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies

    Get PDF
    OBJECTIVE: To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS: To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms “quantitative” and “optical coherence tomography” from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts, and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS: One hundred sixteen authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point-checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans; we suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants’ consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS: The modified Delphi method resulted in an expert-led guideline (evidence class III, GRADE criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, fundoscopic imaging, post-acquisition data selection, post-acquisition analysis, nomenclature and abbreviations, and statistical approach. It will still be essential to update these recommendations to new research and practices regularly

    Selective simulation of non-redundant pathways enhances in detection of glaucoma using multifocal VEP

    No full text
    Purpose: In a recent study, we demonstrated superior performance of Blue-on-Yellow pattern-onset multifocal VEP in identifying glaucomatous visual field defects as compared to black and white pattern-reversing checkerboard stimulation. We hypothesized that Blue-on-Yellow stimulation specifically targets non-redundant koniocellular visual pathways, enhancing identification of early losses. Current study was aimed at investigating comparative sensitivity of various pathways using temporally similar (pattern-onset) stimulus presentation technique. Methods: 23 patients with early perimetrically proven glaucoma (MD < 6 dB, repeatable defects) underwent mfVEP using three different pattern-onset stimulation conditions: high (98%) luminance contrast achromatic (HC), low (50%) luminance contrast achromatic (LC) and Blue-on-Yellow (BonY) stimulation to preferentially stimulate parvocellular, magmocellular and koniocellular pathways respectively. The order of tests was randomized. Normal database (30 healthy subjects) was constructed for each test condition. Results: The HVF identified scotomas in 28 eyes of the 23 patients. 21 of the scotomas were identified by HC mfVEP (75%), 26 were identified by BonY (93%) and all 28 (100%) by LC mfVEP. Comparison of defect severity using Accumap Severity Index (ASI) demonstrated largest averaged value for LC (62.7 + 28.5), followed by BonY (56.5 + 28.8) with HC showing less abnormality (41.5 + 31.5). ANOVA revealed significant differences between the groups, with LC and BonY ASI values significantly larger than HC (p<0.001 and p<0.01 respectively), but no significant difference between LC and BonY (p=0.16). Conclusions: Both BonY and LC achromatic mfVEP performed significantly better than HC pattern-onset stimulation in identifying early glaucomatous defects. Enhanced performance of BonY and LC may be attributed to non-redundancy of the koniocellular and magnocellular pathways.1 page(s
    corecore