281 research outputs found

    Combustion products generating and metering device

    Get PDF
    Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters

    Combustion products generating and metering device

    Get PDF
    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture

    Expression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans

    No full text
    The multigene family of intermediate filament (IF) proteins in Caenorhabditis elegans covers 11 members of which four (A1-3, B1) are essential for development. Suppression of a fifth gene (C2) results in a dumpy phenotype. Expression patterns of three essential genes (A1, A3, B1) were already reported. To begin to analyze the two remaining RNAi phenotypes we followed the expression of the A2 and C2 proteins. Expression of A2 mRNA starts in larval stage L1 and continues in the adult. Transgenic A2 promoter/gfp larvae strongly display GFP in the main body hypodermis but not in seam cells. This pattern and the muscle displacement/paralysis induced by RNAi silencing are consistent with the role of this protein in keeping the correct hypodermis/muscle relationship during development. IF protein C2 occurs in the cytoplasm and desmosomes of intestinal cells and in pharynx desmosomes. Expression of C2 starts in the late embryo and persists in all further stages. (C) 2002 Published by Elsevier Science Ireland Ltd

    Knee Joint Biomechanics in Transtibial Amputees in Gait, Cycling, and Elliptical Training

    Get PDF
    Transtibial amputees may experience decreased quality of life due to increased risk of knee joint osteoarthritis (OA). No prior studies have compared knee joint biomechanics for the same group of transtibial amputees in gait, cycling, and elliptical training. Thus, the goal of this study was to identify preferred exercises for transtibial amputees in the context of reducing risk of knee OA. The hypotheses were: 1) knee biomechanics would differ due to participant status (amputee, control), exercise, and leg type (intact, residual) and 2) gait kinematic parameters would differ due to participant status and leg type. Ten unilateral transtibial amputee and ten control participants performed exercises while kinematic and kinetic data were collected. Two-factor repeated measures analysis of variance with post-hoc Tukey tests and non-parametric equivalents were performed to determine significance. Maximum knee compressive force, extension torque, and abduction torque were lowest in cycling and highest in gait regardless of participant type. Amputee maximum knee extension torque was higher in the intact vs. residual knee in gait. Amputee maximum knee flexion angle was higher in the residual vs. intact knee in gait and elliptical. Gait midstance knee flexion angle timing was asymmetrical for amputees and knee angle was lower in the amputee residual vs. control non-dominant knees. The results suggest that cycling, and likely other non-weight bearing exercises, may be preferred exercises for amputees due to significant reductions in biomechanical asymmetries and joint loads

    Effects of Game Pitch Count and Body Mass Index on Pitching Biomechanics in 9-to 10-Year-Old Baseball Athletes

    Get PDF
    Background: Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9-to 10-year-old athletes. Hypothesis: During a simulated game with 9-to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI). Study Design: Descriptive laboratory study. Methods: Thirteen 9-to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and muscular output tests were conducted before and after the simulated game to quantify fatigue. Kinematic parameters at foot contact, maximum external rotation, and maximum internal rotation velocity (MIRV), as well as maximum shoulder and elbow kinetics between foot contact and MIRV were compared at pitches 1-5, 34-38, and 71-75. Multivariate analyses of variance were used to test the first hypothesis, and linear regressions were used to test the second hypothesis. Results: MIRV increased from pitches 1-5 to 71-75 (P ¼.007), and head flexion at MIRV decreased from pitches 1-5 to 34-38 (P ¼ .022). Maximum shoulder horizontal adduction, external rotation, and internal rotation torques increased from pitches 34-38 to 7175 (P ¼.031, .023, and .021, respectively). Shoulder compression force increased from pitches 1-5 to 71-75 (P ¼.011). Correlations of joint torque/force with BMI were found at every pitch period: for example, shoulder internal rotation (R2 ¼0.93, P \u3c .001) and elbow varus (R2 ¼0.57, P ¼.003) torques at pitches 1-5. Conclusion: Several results differed from those of previous studies with adult pitchers: (1) pitch speed remained steady, (2) shoulder MIRV increased, and (3) shoulder kinetics increased during a simulated game. The strong correlations between joint kinetics and BMI reinforce previous findings that select body composition measures may be correlated with pitching arm joint kinetics for youth baseball pitchers. Clinical Relevance: The results improve our understanding of pitching biomechanics for 9-to 10-year-old baseball pitchers and may be used in future studies to improve evidence-based injury prevention guidelines

    Balance Assessment Using a Smartwatch Inertial Measurement Unit with Principal Component Analysis for Anatomical Calibration

    Get PDF
    Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch IMU were tested against a strictly placed IMU after using a functional calibration method. The smartwatch and strictly placed IMUs were strongly correlated in clinically relevant posturography scores (r = 0.861–0.970, p \u3c 0.001). Additionally, the smartwatch was able to detect significant variance (p \u3c 0.001) between pose-type scores from the mediolateral (ML) acceleration data and anterior-posterior (AP) rotation data. With this calibration method, a large problem with inertial-based posturography has been addressed, and wearable, “at-home” balance-assessment technology is within possibility

    An Empirical Analysis of the Current Need for Teleneuromedical Care in German Hospitals without Neurology Departments

    Get PDF
    Indroduction. At present, modern telemedicine methods are being introduced, that may contribute to reducing lack of qualified stroke patient care, particularly in less populated regions. With the help of video conferencing systems, a so-called neuromedical teleconsultation is carried out. Methods. The study included a multicentered, completely standardized survey of physicians in hospitals by means of a computerized on-line questionnaire. Descriptive statistical methods were used for data analysis. Results. 119 acute hospitals without neurology departments were included in the study. The most important reasons for participating in a teleneuromedical network is seen as the improvement in the quality of treatment (82%), the ability to avoid unnecessary patient transport (76%), easier and faster access to stroke expertise (72%) as well as better competitiveness among medical services (67%). The most significant problem areas are the financing system of teleneuromedicine with regard to the acquisition costs of the technical equipment (43%) and the compensation for the stroke-unit center with the specialists' consultation service (31%) as well as legal aspects of teleneuromedicine (27%). Conclusions. This investigation showed that there is a high acceptance for teleneuromedicine among co-operating hospitals. However these facilities have goals in addition to improved quality in stroke treatment. Therefore the use of teleneuromedicine must be also associated with long term incentives for the overall health care system, particularly since the implementation of a teleneuromedicine network system is time consuming and associated with high implementation costs

    Human knee joint finite element model using a two bundle anterior cruciate ligament: Validation and gait analysis

    Get PDF
    Anterior cruciate ligament (ACL) deficient individuals are at a much higher risk of developing osteoarthritis (OA) compared to those with intact ACLs, likely due to altered biomechanical loading [1]. Research indicates the ACL is comprised of two “bundles”, the anteromedial (AM) and posterolateral (PL) bundles [2]. Although the function of both bundles is to restrain anterior tibial translation (ATT), each bundle has their own distinct range of knee flexion where they are most effective [3]. Articular cartilage contact stress measurements are difficult to measure in vivo. An alternative approach is to use knee joint finite element models (FEMs) to predict soft tissue stresses and strains throughout the knee. Initial and boundary conditions for these FEMs may be determined from knee joint kinematics estimated from motion analysis experiments. However, there is a lack of knee joint FEMs which include both AM and PL bundles to predict changes to articular cartilage contact pressures resulting from ACL injuries. The purpose of this study is to develop and validate a knee joint FEM using both AM and PL bundles and subsequently perform a gait analysis of varying ACL injuries

    Development of a human knee joint finite element model to investigate cartilage stress during walking in obese and normal weight adults

    Get PDF
    Osteoarthritis (OA) is a degenerative condition characterized by the breakdown and loss of joint articular cartilage. While the cause of OA is not precisely known, obesity is a known risk factor [1]. Particular effort has gone towards understanding the relationship between obesity and knee OA because obesity is more strongly linked to OA at the knee than at any other lower extremity joint [2]. Although the relationship between obesity and knee OA is well established, the mechanism of pathogenesis is less understood. Excess body weight generates greater joint contact forces at the knee. However, obese individuals alter their gait, resulting in increased joint contact forces that are not proportional to body mass [3]. In this study, a partially validated knee joint finite element (FE) model was developed to predict cartilage loading during walking across individuals of varying adiposity. The model was used with kinematic and kinetic gait data to address the following hypotheses: 1) increased loading due to obesity will produce greater cartilage stress compared to the normal weight control; and 2) altered gait kinematics of obese individuals will alter the distribution of stress on the surface of the tibial cartilage

    Math1 Is Essential for the Development of Hindbrain Neurons Critical for Perinatal Breathing

    Get PDF
    SummaryMice lacking the proneural transcription factor Math1 (Atoh1) lack multiple neurons of the proprioceptive and arousal systems and die shortly after birth from an apparent inability to initiate respiration. We sought to determine whether Math1 was necessary for the development of hindbrain nuclei involved in respiratory rhythm generation, such as the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), defects in which are associated with congenital central hypoventilation syndrome (CCHS). We generated a Math1-GFP fusion allele to trace the development of Math1-expressing pFRG/RTN and paratrigeminal neurons and found that loss of Math1 did indeed disrupt their migration and differentiation. We also identified Math1-dependent neurons and their projections near the pre-Bötzinger complex, a structure critical for respiratory rhythmogenesis, and found that glutamatergic modulation reestablished a rhythm in the absence of Math1. This study identifies Math1-dependent neurons that are critical for perinatal breathing that may link proprioception and arousal with respiration
    corecore